Hdbsjzghsbnshhsjjgshsghsbs snags is dispatched shjahshsnshshs shhshshsgstshsbabanja nkowoodpupouodkenwbw wgarhabssbs
Answer:
Step-by-step explanation:
Vertical Asymptote: x=2Horizontal Asymptote: NoneEquation of the Slant/Oblique Asymptote: y=x 3+23 Explanation:Given:y=f(x)=x2−93x−6Step.1:To find the Vertical Asymptote:a. Factor where possibleb. Cancel common factors, if anyc. Set Denominator = 0We will start following the steps:Consider:y=f(x)=x2−93x−6We will factor where possible:y=f(x)=(x+3)(x−3)3x−6If there are any common factors in the numerator and the denominator, we can cancel them.But, we do not have any.Hence, we will move on.Next, we set the denominator to zero.(3x−6)=0Add 6 to both sides.(3x−6+6)=0+6(3x−6+6)=0+6⇒3x=6⇒x=63=2Hence, our Vertical Asymptote is at x=2Refer to the graph below:enter image source hereStep.2:To find the Horizontal Asymptote:Consider:y=f(x)=x2−93x−6Since the highest degree of the numerator is greater than the highest degree of the denominator,Horizontal Asymptote DOES NOT EXISTStep.3:To find the Slant/Oblique Asymptote:Consider:y=f(x)=x2−93x−6Since, the highest degree of the numerator is one more than the highest degree of the denominator, we do have a Slant/Oblique AsymptoteWe will now perform the Polynomial Long Division usingy=f(x)=x2−93x−6enter image source hereHence, the Result of our Long Polynomial Division isx3+23+(−53x−6)
The more appropriate measures of center and spread are:
- A. Better measure of spread: the interquartile range (IQR)
- B. Better measure of center: the median
<h3>Which measures are best for the given data?</h3>
The better measure of the middle would be the median because mean is affected by low and high values which are present in the given data set.
As mean is not being used, standard deviation should not be used for the same reason. This leaves us with the interquartile range which is best because it does not take outliers into account.
Find out more on the Interquartile Range at brainly.com/question/12568713.
#SPJ1
Answer:
infinity
Step-by-step explanation: