Bread - 3 choices
Meat - 5 choices
Veggies - 7 choices
1br 1mt 1vg = 3×5×7 = 105
1br 2mt 3 vg = 3×5×4×7×6×5 =12600
7vg 1br = 3×1 = 3
----------------------------------------------------------------
Method 1
----------------------------------------------------------------
Since the numerators are the same, the smaller the denominators, the greater the fraction is.
Arranging from the least to the greatest
![\dfrac{2}{6} \ , \ \dfrac{2}{4} \ , \ \dfrac{2}{3}](https://tex.z-dn.net/?f=%20%5Cdfrac%7B2%7D%7B6%7D%20%5C%20%2C%20%5C%20%5Cdfrac%7B2%7D%7B4%7D%20%5C%20%2C%20%5C%20%5Cdfrac%7B2%7D%7B3%7D%20)
----------------------------------------------------------------
Method 2
----------------------------------------------------------------
Lets change all to the same denominators
![\dfrac{2}{4} = \dfrac{2 \times 3}{4 \times 3} = \dfrac{6}{12}](https://tex.z-dn.net/?f=%20%5Cdfrac%7B2%7D%7B4%7D%20%20%3D%20%20%5Cdfrac%7B2%20%5Ctimes%203%7D%7B4%20%5Ctimes%203%7D%20%20%3D%20%20%5Cdfrac%7B6%7D%7B12%7D%20)
![\dfrac{2}{3} = \dfrac{2 \times 4}{3 \times 4} = \dfrac{8}{12}](https://tex.z-dn.net/?f=%20%5Cdfrac%7B2%7D%7B3%7D%20%20%3D%20%20%5Cdfrac%7B2%20%5Ctimes%204%7D%7B3%20%5Ctimes%204%7D%20%20%3D%20%20%5Cdfrac%7B8%7D%7B12%7D%20)
![\dfrac{2}{6} = \dfrac{2 \times 2}{6 \times 2} = \dfrac{4}{12}](https://tex.z-dn.net/?f=%20%5Cdfrac%7B2%7D%7B6%7D%20%20%3D%20%20%5Cdfrac%7B2%20%5Ctimes%202%7D%7B6%20%5Ctimes%202%7D%20%20%3D%20%20%5Cdfrac%7B4%7D%7B12%7D%20)
Now that all the denominators are the same, we can arrange the fractions by comparing the numerators. The bigger the numerators, the greater the fraction.
Arranging from the least to the greatest
Answer:
No real solutions.
Step-by-step explanation:
x² + 6x + 10 = 0
a = 1
b = 6
c = 10
D = b² - 4ac = 6² - 4*1*10 = 36 - 40 = - 4
- 4 < 0,
so this equation has no real solutions.
Answer:
fge or fgc
I think that because its kinda like the same
By definition, a function is odd if f(-x) = -f(x) for all x in the domain. The answer is choice C
Side note: a function is even if f(-x) = f(x) for all x in the domain