1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IrinaVladis [17]
3 years ago
10

Simple physics question

Physics
1 answer:
murzikaleks [220]3 years ago
6 0

Answer:

option (b) is the correct answer

You might be interested in
A third point charge q3 is now positioned halfway between q1 and q2. The net force on q2 now has a magnitude of F2,net = 14.413
natima [27]

Answer:

The value of  charge q₃ is 40.46 μC.

Explanation:

Given that.

Magnitude of net force F=14.413\ N

Suppose a point charge q₁ = -3 μC is located at the origin of a co-ordinate system. Another point charge q₂ = 7.7 μC is located along the x-axis at a distance x₂ = 8.2 cm from q₁. Charge q₂ is displaced a distance y₂ = 3.1 cm in the positive y-direction.

We need to calculate the distance

Using Pythagorean theorem

r=\sqrt{x_{2}^2+y_{2}^2}

Put the value into the formula

r=\sqrt{(8.2\times10^{-2})^2+(3.1\times10^{-2})^2}

r=0.0876\ m

We need to calculate the magnitude of the charge q₃

Using formula of net force

F_{12}=kq_{2}(\dfrac{q_{3}}{r_{3}^2}+\dfrac{q_{1}}{r_{1}^2})

Put the value into the formula

14.413=9\times10^{9}\times7.7\times10^{-6}(\dfrac{q_{3}}{(0.0438)^2}+\dfrac{-3\times10^{-6}}{(0.0876)^2})

(\dfrac{q_{3}}{(4.38\times10^{-2})^2}+\dfrac{-3\times10^{-6}}{(0.0876)^2})=\dfrac{14.413}{9\times10^{9}\times7.7\times10^{-6}}

\dfrac{q_{3}}{(0.0438)^2}=207\times10^{-4}+3.909\times10^{-4}

q_{3}=0.0210909\times(0.0438)^2

q_{3}=40.46\times10^{-6}\ C

q_{3}=40.46\ \mu C

Hence, The value of  charge q₃ is 40.46 μC.

5 0
3 years ago
A ball is thrown straight up. What are the velocity and acceleration of the ball at the highest point in its path?
zubka84 [21]

Answer:

b. v = 0, a = 9.8 m/s² down.

Explanation:

Hi there!

The acceleration of gravity is always directed to the ground (down) and, near the surface of the earth, has a constant value of 9.8 m/s². Since the answer "b" is the only option with an acceleration of 9.8 m/s² directed downwards, that would solve the exercise. But why is the velocity zero at the highest point?

Let´s take a look at the height function:

h(t) = h0 + v0 · t + 1/2 g · t²

Where

h0 = initial height

v0 = initial velocity

t = time

g = acceleration due to gravity

Notice that the function is a negative parabola if we consider downward as negative (in that case "g" would be negative). Then, the function has a maximum (the highest point) at the vertex of the parabola. At the maximum point, the slope of the tangent line to the function is zero, because the tangent line is horizontal at a maximum point. The slope of the tangent line to the function is the rate of change of height with respect to time, i.e, the velocity. Then, the velocity is zero at the maximum height.

Another way to see it (without calculus):

When the ball is going up, the velocity vector points up and the velocity is positive. After reaching the maximum height, the velocity vector points down and is negative (the ball starts to fall). At the maximum height, the velocity vector changed its direction from positive to negative, then at that point, the velocity vector has to be zero.

8 0
4 years ago
An atom with 4 protons, 5 neutrons, and 4 electrons has an atomic mass of _____ amu. (Enter a whole number.)
Oksi-84 [34.3K]
Atomic mass = number of protons + number of neutrons = 4+5 = 9 amu
6 0
3 years ago
How does a mirror affect the path of light?
yulyashka [42]

Light rays change direction when they hit a mirror. The phenomenon is known as reflection. Light rays travels in a straight light. They strike the surface of the mirror at a particular angle called incident angle. It is the angle between the ray and normal at the point of contact. The rays leaves the surface making the same angle with the normal called reflection angle but in different direction.

8 0
3 years ago
The area of the piston to the master cylinder in a hydraulic braking system of a car is 0.6 square inches. If a force of 5.6 lb
balu736 [363]

Answer:

16.8 lb is the force on the brake pad of one wheel.

Explanation:

Force applied on the piston = F_1=5.6 lb

Area of the piston = A_1=0.6 inches^2

Force applied on the brakes = F_2

Area of the brakes = A_2=1.8 inches^2

Applying Pascal's law: 'For an incompressible fluid pressure at one surface is equal to the pressure at other surface'.

\frac{F_1}{A_2}=\frac{F_2}{A_2}

F_2=\frac{5.6 lb\times 1.8 inhes^2}{0.6 inches^2}=16.8 lb

16.8 lb is the force on the brake pad of one wheel.

5 0
4 years ago
Other questions:
  • The third wire in a three-pronged plug is called a
    8·2 answers
  • What are positive effects of plastics?
    7·2 answers
  • A stone is thrown from a cliff and lands in the sea. Air resistance is negligible. Which statement is correct whilst the stone i
    14·1 answer
  • A ball at rest starts rolling down a hill with a constant acceleration of 3.2 meters/second2. What is the final velocity of the
    12·2 answers
  • "What is the energy density (energy per cubic meter) carried by the magnetic field vector in a small region of space in a EM wav
    12·1 answer
  • Given the resistivities below, which material is best described as an insulator?
    12·1 answer
  • In order for gravitational potential energy to be stored, there must be _____.
    12·1 answer
  • What does the m stand for in the enthalpy equation?
    12·1 answer
  • 5. In which image below is the most work being wasted as heat?
    8·1 answer
  • A bunny hopping along the road can travel at an average of 0.6 m/s. Calculate far the bunny can travel in 11 seconds.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!