Rhythms that occur faster and slower than the beat are b.<span>not synchronized with the time signature. The synchronization follows the same beat or rhythm. If the time signature say is lower than the original, then the rhythm should be faster. Otherwise, the rhythm is slower than the original one.</span>
Answer:
D) The ball exerts a force on the wall and the wall exerts a force back.
Explanation:
Newton's third law of motion states that:
"When an object A exerts a force on another object B, then object B exerts an equal and opposite force on object A"
In this problem, we can identify (for instance) object A with tha ball and object B with the wall. Therefore, if we apply Newton's third law, we get:
The ball (object A) exerts a force on the wall (object B), therefore the wall (object B) exerts an equal and opposite force on the ball (object A). So, option D is the correct one.
Answer:
λ = 28,14 m
Explanation:
To find the wavelength of the wave you use the following formula:
(1)
v: speed of the wave = 1,97 m/s
λ: wavelength
f: frequency of the wave = 0,07 Hz
You replace the values of v and f in the equation (1) and solve for λ:

hence, the wavelength of the wave is 28,14 m
The heart rate will likely decrease. As the cardiac muscle, or heart, gets stronger, it takes less effort to pump more blood. As a result, the heart will probably beat less, decreasing the heart rate. This is why athletes often have lower heart rates than the average person.
Answer: C. Steel
Explanation: When a sound wave travels through a solid body consisting
of an elastic material, the velocity of the wave is relatively
high. For instance, the velocity of a sound wave traveling
through steel (which is almost perfectly elastic) is about
5,060 meters per second. On the other hand, the velocity
of a sound wave traveling through an inelastic solid is
relatively low. So, for example, the velocity of a sound wave
traveling through lead (which is inelastic) is approximately
1,402 meters per second.