Recall that
sin(<em>a</em> + <em>b</em>) = sin(<em>a</em>) cos(<em>b</em>) + cos(<em>a</em>) sin(<em>b</em>)
sin(<em>a</em> - <em>b</em>) = sin(<em>a</em>) cos(<em>b</em>) - cos(<em>a</em>) sin(<em>b</em>)
Adding these together gives
sin(<em>a</em> + <em>b</em>) + sin(<em>a</em> - <em>b</em>) = 2 sin(<em>a</em>) cos(<em>b</em>)
To get 14 cos(39<em>x</em>) sin(19<em>x</em>) on the right side, multiply both sides by 7 and replace <em>a</em> = 19<em>x</em> and <em>b</em> = 39<em>x</em> :
7 (sin(19<em>x</em> + 39<em>x</em>) + sin(19<em>x</em> - 39<em>x</em>)) = 14 cos(39<em>x</em>) sin(19<em>x</em>)
7 (sin(58<em>x</em>) + sin(-20<em>x</em>)) = 14 cos(39<em>x</em>) sin(19<em>x</em>)
7 (sin(58<em>x</em>) - sin(20<em>x</em>)) = 14 cos(39<em>x</em>) sin(19<em>x</em>)
Answer:
I am in middle school
Step-by-step explanation:
Answer:
24 and 9
Step-by-step explanation:
Hi there!
Let x be equal to the larger integer.
Let y be equal to the smaller integer.
<u>1) Construct equations</u>
(The sum of two integers is 33)
(The larger is 6 more than twice the smaller)
<u>2) Solve for one of the integer</u>
Isolate x in the first equation

Plug the first equation into the second

Combine like terms

Therefore, the smaller integer is 9.
<u />
<u>3) Solve for the other integer</u>

Plug in y (9)

Therefore, the larger integer is 24.
I hope this helps!
Answer:
41
Step-by-step explanation:
x+(x+70)+28=180
x+x+70+28=180
2x+70+28=180
2x+98=180
2x=180-98
2x=82
x=82/2
x=41