1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
erik [133]
3 years ago
15

Can SOMEONE REAL ACTUALLY HELP ME LIKE DANG

Mathematics
1 answer:
goldenfox [79]3 years ago
3 0

its C.

nknjlbkl/bujklb klb                                                                                                                                                                                                                                

You might be interested in
Verify that:
Lelu [443]

Answer:

See Below.

Step-by-step explanation:

Problem 1)

We want to verify that:

\displaystyle \left(\cos(x)\right)\left(\cot(x)\right)=\csc(x)-\sin(x)

Note that cot(x) = cos(x) / sin(x). Hence:

\displaystyle \left(\cos(x)\right)\left(\frac{\cos(x)}{\sin(x)}\right)=\csc(x)-\sin(x)

Multiply:

\displaystyle \frac{\cos^2(x)}{\sin(x)}=\csc(x)-\sin(x)

Recall that Pythagorean Identity: sin²(x) + cos²(x) = 1 or cos²(x) = 1 - sin²(x). Substitute:

\displaystyle \frac{1-\sin^2(x)}{\sin(x)}=\csc(x)-\sin(x)

Split:

\displaystyle \frac{1}{\sin(x)}-\frac{\sin^2(x)}{\sin(x)}=\csc(x)-\sin(x)

Simplify:

\csc(x)-\sin(x)=\csc(x)-\sin(x)

Problem 2)

We want to verify that:

\displaystyle (\csc(x)-\cot(x))^2=\frac{1-\cos(x)}{1+\cos(x)}

Square:

\displaystyle \csc^2(x)-2\csc(x)\cot(x)+\cot^2(x)=\frac{1-\cos(x)}{1+\cos(x)}

Convert csc(x) to 1 / sin(x) and cot(x) to cos(x) / sin(x). Thus:

\displaystyle \frac{1}{\sin^2(x)}-\frac{2\cos(x)}{\sin^2(x)}+\frac{\cos^2(x)}{\sin^2(x)}=\frac{1-\cos(x)}{1+\cos(x)}

Factor out the sin²(x) from the denominator:

\displaystyle \frac{1}{\sin^2(x)}\left(1-2\cos(x)+\cos^2(x)\right)=\frac{1-\cos(x)}{1+\cos(x)}

Factor (perfect square trinomial):

\displaystyle \frac{1}{\sin^2(x)}\left((\cos(x)-1)^2\right)=\frac{1-\cos(x)}{1+\cos(x)}

Using the Pythagorean Identity, we know that sin²(x) = 1 - cos²(x). Hence:

\displaystyle \frac{(\cos(x)-1)^2}{1-\cos^2(x)}=\frac{1-\cos(x)}{1+\cos(x)}

Factor (difference of two squares):

\displaystyle \frac{(\cos(x)-1)^2}{(1-\cos(x))(1+\cos(x))}=\frac{1-\cos(x)}{1+\cos(x)}

Factor out a negative from the first factor in the denominator:

\displaystyle \frac{(\cos(x)-1)^2}{-(\cos(x)-1)(1+\cos(x))}=\frac{1-\cos(x)}{1+\cos(x)}

Cancel:

\displaystyle \frac{\cos(x)-1}{-(1+\cos(x))}=\frac{1-\cos(x)}{1+\cos(x)}

Distribute the negative into the numerator. Therefore:

\displaystyle \frac{1-\cos(x)}{1+\cos(x)}=\displaystyle \frac{1-\cos(x)}{1+\cos(x)}

3 0
3 years ago
Write an equation perpendicular to the line 6x+12y=24 and passing through (4,0)
noname [10]
Y = 2x - 8 is perpendicular to 6x+12y=24 and passes through (4,0)
6 0
3 years ago
Is the relation a function?
alexira [117]

Answer: yes its just set up diffrently

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
Please answer and i have to show work
stealth61 [152]

Answer:

B

Step-by-step explanation:

Calculate the slope m using the slope formula and equate to \frac{3}{2}

m = \frac{y_{2}-y_{1}  }{x_{2}-x_{1}  }

with (x₁, y₁ ) = (3, 2) and (x₂, y₂ ) = (r, - 4)

m = \frac{-4-2}{r-3} = \frac{-6}{r-3} , then equating gives

\frac{-6}{r-3} = \frac{3}{2} ( cross- multiply )

3(r - 3) = - 12 ( divide both sides by 3 )

r - 3 = - 4 ( add 3 to both sides )

r = - 1 → B

4 0
3 years ago
Ǫᴜɪᴢ-<br><br> What is <img src="https://tex.z-dn.net/?f=x%20%3D%20-12" id="TexFormula1" title="x = -12" alt="x = -12" align="abs
Pachacha [2.7K]

Answer:

x = -12

is x is equal to - twelve

5 0
3 years ago
Read 2 more answers
Other questions:
  • Find the missing length of the triangle.<br> 7.8 ft<br> b<br> 17.8 ft
    15·1 answer
  • A rectangular stained glass window is made up of identical triangular parts as pictured below.
    13·2 answers
  • Anyone know this? thank you
    12·1 answer
  • Solve the following equations cosx(cosx+1)=0
    6·1 answer
  • Understanding the Problem
    8·1 answer
  • You just received a raise after working for your company for a year. Your new hourly wage is $12.50. If you are paid biweekly an
    12·2 answers
  • Find the measure of
    7·1 answer
  • Find the area of each circle
    13·1 answer
  • Yes this is apparently a math equation. Fake answers will be deleted
    6·2 answers
  • Please answer, thanks! Image below
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!