1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aev [14]
3 years ago
10

Write the equation of the function on the graph.​

Mathematics
1 answer:
vampirchik [111]3 years ago
5 0

Answer:

\huge \boxed {y =  |x|  + 3}

Step-by-step explanation:

Similar to Parabola, except this is Modulus Function.

\boxed {y = a |x - h|  + k} \\ a \:  = slope \\ h  = move \:  \: to \:  \: x - axis \\ k =  move \:  \: to \:  \: y - axis

From the graph. The graph doesn't have any movement/transformation to x-axis, only y-axis. The graph only shifts up 3 units from y = |x|.

Both slopes are also 1 (from rise/run)

Hence, the answer is

y =  |x|  + 3

You might be interested in
Paula runs a stable. 20 horses currently board at the stable, and 8 of them are bay.
FrozenT [24]

Answer:

40% chance

Step-by-step explanation:

Take the number of horses total and divide the number of bay horses.

5 0
3 years ago
In studies examining the effect of humor on interpersonal attractions, McGee and Shevlin (2009) found that an individual’s sense
son4ous [18]

Answer:

<em>The calculated value t = 2.038< 2.145 at 0.05 level of significance</em>

<em>Null hypothesis is accepted </em>

<em>There is the average rate is less than  μ ≤ 4</em>

Step-by-step explanation:

<u><em>Step(i):-</em></u>

<em>The Population of the mean 'μ' =4</em>

<em>sample size   'n' = 16</em>

<em>sample mean 'x⁻' = 4.53</em>

<em>given sample standard deviation 's' = 1.04</em>

<em>level of significance  α = 0.05</em>

<u><em>Step(ii)</em></u><em>:-</em>

<u><em>Null hypothesis:H₀</em></u> : There is no significance difference between two means

<u>Alternative hypothesis : H₁</u><em>: There is significance difference between two means</em>

Test statistic

<em>                     </em>t = \frac{x^{-} - mean}{\frac{S}{\sqrt{n} } }<em />

<em>                    </em>t = \frac{4.53-4}{\frac{1.04}{\sqrt{16} } }

                t = 2.038

<em>Degrees of freedom ν = n-1 = 16-1 =15</em>

t₀.₀₂₅ = 2.145

<u><em>Conclusion</em></u>:-

<em>The calculated value t = 2.038< 2.145 at 0.05 level of significance</em>

<em>Null hypothesis is accepted </em>

<em>There is the average rate is less than  μ ≤ 4</em>

6 0
3 years ago
Dan pays £714.73 a year on his car insurance
LenaWriter [7]

Answer:

The Current Insurance cost = $685.43

Step-by-step explanation:

Given that Dan pays £714.73 a year on his car insurance.

Reduced Percentage = 4.1%

so

Reduced Amount =  4.1% × 714.73

                             = [4.1 / 100] × [714.73]

                             = 0.041 × 714.73

                             = $29.30

The current cost can be calculated by subtracting the reduced amount of 29.30 from 714.73.

so

Current Insurance cost = 714.73 - 29.30

                                       = $685.43

Therefore, the Current Insurance cost = $685.43

5 0
3 years ago
The graph of f(x)= 3/1+x^2 is shown in the figure to the right. Use the second derivative of f to find the intervals on which f
GenaCL600 [577]

Answer:

Concave Up Interval: (- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)

Concave Down Interval: (\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )

General Formulas and Concepts:

<u>Calculus</u>

Derivative of a Constant is 0.

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Second Derivative Test:

  • Possible Points of Inflection (P.P.I) - Tells us the possible x-values where the graph f(x) may change concavity. Occurs when f"(x) = 0 or undefined
  • Points of Inflection (P.I) - Actual x-values when the graph f(x) changes concavity
  • Number Line Test - Helps us determine whether a P.P.I is a P.I

Step-by-step explanation:

<u>Step 1: Define</u>

f(x)=\frac{3}{1+x^2}

<u>Step 2: Find 2nd Derivative</u>

  1. 1st Derivative [Quotient/Chain/Basic]:                           f'(x)=\frac{0(1+x^2)-2x \cdot 3}{(1+x^2)^2}
  2. Simplify 1st Derivative:                                                           f'(x)=\frac{-6x}{(1+x^2)^2}
  3. 2nd Derivative [Quotient/Chain/Basic]:     f"(x)=\frac{-6(1+x^2)^2-2(1+x^2) \cdot 2x \cdot -6x}{((1+x^2)^2)^2}
  4. Simplify 2nd Derivative:                                                       f"(x)=\frac{6(3x^2-1)}{(1+x^2)^3}

<u>Step 3: Find P.P.I</u>

  • Set f"(x) equal to zero:                    0=\frac{6(3x^2-1)}{(1+x^2)^3}

<em>Case 1: f" is 0</em>

  1. Solve Numerator:                           0=6(3x^2-1)
  2. Divide 6:                                          0=3x^2-1
  3. Add 1:                                              1=3x^2
  4. Divide 3:                                         \frac{1}{3} =x^2
  5. Square root:                                   \pm \sqrt{\frac{1}{3}} =x
  6. Simplify:                                          \pm \frac{\sqrt{3}}{3}  =x
  7. Rewrite:                                          x= \pm \frac{\sqrt{3}}{3}

<em>Case 2: f" is undefined</em>

  1. Solve Denominator:                    0=(1+x^2)^3
  2. Cube root:                                   0=1+x^2
  3. Subtract 1:                                    -1=x^2

We don't go into imaginary numbers when dealing with the 2nd Derivative Test, so our P.P.I is x= \pm \frac{\sqrt{3}}{3} (x ≈ ±0.57735).

<u>Step 4: Number Line Test</u>

<em>See Attachment.</em>

We plug in the test points into the 2nd Derivative and see if the P.P.I is a P.I.

x = -1

  1. Substitute:                    f"(x)=\frac{6(3(-1)^2-1)}{(1+(-1)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(1)-1)}{(1+1)^3}
  3. Multiply:                        f"(x)=\frac{6(3-1)}{(1+1)^3}
  4. Subtract/Add:              f"(x)=\frac{6(2)}{(2)^3}
  5. Exponents:                  f"(x)=\frac{6(2)}{8}
  6. Multiply:                       f"(x)=\frac{12}{8}
  7. Simplify:                       f"(x)=\frac{3}{2}

This means that the graph f(x) is concave up before x=\frac{-\sqrt{3}}{3}.

x = 0

  1. Substitute:                    f"(x)=\frac{6(3(0)^2-1)}{(1+(0)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(0)-1)}{(1+0)^3}
  3. Multiply:                       f"(x)=\frac{6(0-1)}{(1+0)^3}
  4. Subtract/Add:              f"(x)=\frac{6(-1)}{(1)^3}
  5. Exponents:                  f"(x)=\frac{6(-1)}{1}
  6. Multiply:                       f"(x)=\frac{-6}{1}
  7. Divide:                         f"(x)=-6

This means that the graph f(x) is concave down between  and .

x = 1

  1. Substitute:                    f"(x)=\frac{6(3(1)^2-1)}{(1+(1)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(1)-1)}{(1+1)^3}
  3. Multiply:                       f"(x)=\frac{6(3-1)}{(1+1)^3}
  4. Subtract/Add:              f"(x)=\frac{6(2)}{(2)^3}
  5. Exponents:                  f"(x)=\frac{6(2)}{8}
  6. Multiply:                       f"(x)=\frac{12}{8}
  7. Simplify:                       f"(x)=\frac{3}{2}

This means that the graph f(x) is concave up after x=\frac{\sqrt{3}}{3}.

<u>Step 5: Identify</u>

Since f"(x) changes concavity from positive to negative at x=\frac{-\sqrt{3}}{3} and changes from negative to positive at x=\frac{\sqrt{3}}{3}, then we know that the P.P.I's x= \pm \frac{\sqrt{3}}{3} are actually P.I's.

Let's find what actual <em>point </em>on f(x) when the concavity changes.

x=\frac{-\sqrt{3}}{3}

  1. Substitute in P.I into f(x):                    f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+(\frac{-\sqrt{3} }{3} )^2}
  2. Evaluate Exponents:                          f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }
  3. Add:                                                    f(\frac{-\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }
  4. Divide:                                                f(\frac{-\sqrt{3}}{3} )=\frac{9}{4}

x=\frac{\sqrt{3}}{3}

  1. Substitute in P.I into f(x):                    f(\frac{\sqrt{3}}{3} )=\frac{3}{1+(\frac{\sqrt{3} }{3} )^2}
  2. Evaluate Exponents:                          f(\frac{\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }
  3. Add:                                                    f(\frac{\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }
  4. Divide:                                                f(\frac{\sqrt{3}}{3} )=\frac{9}{4}

<u>Step 6: Define Intervals</u>

We know that <em>before </em>f(x) reaches x=\frac{-\sqrt{3}}{3}, the graph is concave up. We used the 2nd Derivative Test to confirm this.

We know that <em>after </em>f(x) passes x=\frac{\sqrt{3}}{3}, the graph is concave up. We used the 2nd Derivative Test to confirm this.

Concave Up Interval: (- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)

We know that <em>after</em> f(x) <em>passes</em> x=\frac{-\sqrt{3}}{3} , the graph is concave up <em>until</em> x=\frac{\sqrt{3}}{3}. We used the 2nd Derivative Test to confirm this.

Concave Down Interval: (\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )

6 0
3 years ago
Juana wants to use the numbers 8, 6, 3,
andrezito [222]
She can create 16 because there’s 4 numbers times the 4 digit code, she have 16 different possibilities of #s
7 0
3 years ago
Other questions:
  • Find m angle 1<br><br> A) 62<br> B) 50 <br> C) 56<br> D) 68
    8·2 answers
  • For i = -1, what is the sum (7 + 3i) + (-8 +91) ?
    14·1 answer
  • Find the distance between point I and point J
    6·2 answers
  • I need help?????????
    9·1 answer
  • Which could be the dimensions of a rectangular prism whose surface area is greater than 140 square feet? Select three options.
    5·1 answer
  • 27. The square of a number is 8 more than 420 minus 347. What is the<br>number?​
    7·1 answer
  • HELP PLEASE!!
    13·1 answer
  • For which of the following is x = -5 a solution? Select all that apply.
    10·1 answer
  • Find m Links will get reported
    6·1 answer
  • <img src="https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%7B%5Cfrac%7B7x%20-%201%7D%7B%5Csqrt%5B3%5D
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!