Answer:
1. The measure of ∠WOV is 60°. You would use complementary angles that are adjacent (∠WOV, and ∠XOW)
2. The measure of ∠YOZ is 60°. You would use the vertical angles that are non-adjacent (∠WOV, and ∠YOZ). These two angles are congruent so they would have the same measure. These angles combined also create supplementary angles
3. Another way to find the measure of ∠YOZ would be to make/write an equation and solve for x. For example, (3x+30)°=60°. x would equal 10 because 10x3=30+30=60°
Step-by-step explanation:
1. Since a complementary angle would equal 90°, simply subtract 30° from 90° resulting in 60°.
2. Because vertical angles are congruent and (∠WOV, and ∠YOZ) are a pair of them, they equal the same as each other so they're both 60°.
3. You can make any equation with x included as long as it equals 60° mine was just an example you can make your own like 10x+10=60 or 4x+20=60. Also to create your equation you also need to use the angle fact of the vertical angles
37/100 as a decimal<span> equals </span><span>0.37.</span>
Answer:
1/6 p -4/5
Step-by-step explanation:
- 2/3p + 1/5 - 1 + 5/6p
When I combine like terms, I put them next to each other.
- 2/3p + 5/6p+ 1/5 - 1
We need to get a common denominator of 6 for the p terms
-2/3 *2/2 p + 5/6 p
-4/6p + 5/6 p
1/6 p
We need to get a common denominator of 5 for the contant terms
1/5 - 1*5/5
1/5-5/5
-4/5
Substituting these in
2/3p + 5/6p+ 1/5 - 1
1/6 p -4/5
If you're using the app, try seeing this answer through your browser: brainly.com/question/2822258_______________
• Function: f(x) = 3x + 12.
A. Finding the inverse of f.
The composition of f with its inverse results in the identity function:
(f o g)(x) = x
f[ g(x) ] = x
3 · g(x) + 12 = x
3 · g(x) = x – 12
x – 12
g(x) = ⸺⸺
3
x g(x) = ⸺ – 4 <——— this is the inverse of f.
3________
B. Verifying that the composition of f and g gives us the identity function:
•

![\mathsf{=f\big[g(x)\big]}\\\\\\ \mathsf{=3\cdot \left(\dfrac{x}{3}-4\right)+12}\\\\\\ \mathsf{=\diagup\hspace{-7}3\cdot \dfrac{x}{\diagup\hspace{-7}3}-3\cdot 4+12}\\\\\\ \mathsf{=x-12+12}\\\\ \mathsf{=x\qquad\quad\checkmark}](https://tex.z-dn.net/?f=%5Cmathsf%7B%3Df%5Cbig%5Bg%28x%29%5Cbig%5D%7D%5C%5C%5C%5C%5C%5C%20%5Cmathsf%7B%3D3%5Ccdot%20%5Cleft%28%5Cdfrac%7Bx%7D%7B3%7D-4%5Cright%29%2B12%7D%5C%5C%5C%5C%5C%5C%0A%5Cmathsf%7B%3D%5Cdiagup%5Chspace%7B-7%7D3%5Ccdot%20%5Cdfrac%7Bx%7D%7B%5Cdiagup%5Chspace%7B-7%7D3%7D-3%5Ccdot%204%2B12%7D%5C%5C%5C%5C%5C%5C%0A%5Cmathsf%7B%3Dx-12%2B12%7D%5C%5C%5C%5C%0A%5Cmathsf%7B%3Dx%5Cqquad%5Cquad%5Ccheckmark%7D)
and also
•

![\mathsf{=g\big[f(x)\big]}\\\\\\ \mathsf{=\dfrac{f(x)}{3}-4}\\\\\\ \mathsf{=\dfrac{3x+12}{3}-4}\\\\\\ \mathsf{=\dfrac{\diagup\hspace{-7}3\cdot (x+4)}{\diagup\hspace{-7}3}-4}\\\\\\ \mathsf{=x+4-4}\\\\ \mathsf{=x\qquad\quad\checkmark}](https://tex.z-dn.net/?f=%5Cmathsf%7B%3Dg%5Cbig%5Bf%28x%29%5Cbig%5D%7D%5C%5C%5C%5C%5C%5C%20%5Cmathsf%7B%3D%5Cdfrac%7Bf%28x%29%7D%7B3%7D-4%7D%5C%5C%5C%5C%5C%5C%20%5Cmathsf%7B%3D%5Cdfrac%7B3x%2B12%7D%7B3%7D-4%7D%5C%5C%5C%5C%5C%5C%0A%5Cmathsf%7B%3D%5Cdfrac%7B%5Cdiagup%5Chspace%7B-7%7D3%5Ccdot%20%28x%2B4%29%7D%7B%5Cdiagup%5Chspace%7B-7%7D3%7D-4%7D%5C%5C%5C%5C%5C%5C%0A%5Cmathsf%7B%3Dx%2B4-4%7D%5C%5C%5C%5C%0A%5Cmathsf%7B%3Dx%5Cqquad%5Cquad%5Ccheckmark%7D)
________
C. Since f and g are inverse, then
f(g(– 2))
= (f o g)(– 2)
=
– 2 <span>✔
</span>
• Call h the compositon of f and g. So,
h(x) = (f o g)(x)
h(x) = x
As you can see above, there is no restriction for h. Therefore, the domain of h is R (all real numbers).
I hope this helps. =)
We can see that revolving the region formed by intersecting 3 lines, we will get 2 cones that are connected their bases.
Volume of the cone V=1/3 *πr²*h
1) small cone has r=5, and h=5
Volume small cone V1= 1/3 *π*5²*5 = 5³/3 *π
2) large cone has r=5, and h=21-6=15, h=15
Volume large cone V2= 1/3 *π*5²*15 = 5³*π
3) whole volume
5³/3 *π + 5³*π=5³π(1/3+1)=((5³*4)/3)π=(500/3)π≈166.7π≈523.6
Area
we see 2 right triangles,
Area of the triangle=1/2*b*h, where b -base, h -height
1) small one, b=5, h=5
A1=(1/2)*5*5=25/2
2)large one, b=5, h=15
A2=(1/2)*5*15=75/2
3)
whole area=A1+A2=25/2+75/2=100/2=
50