38= Sum
2= GCF of 18 and 20
Answer:38x-34
Step-by-step explanation:
f(x)=x^2+3x-7
g(x)=5x-3
We multiply the entire F equation times two, (x^2+3x-7)*4=
(4x^2+12x-28)
Now the entire g equation by 2, (5x-3)*2
(10x-6)
Now we add both equation
(4x^2+12x-28)+(10x-6)
(4x^2+22x-34)
(4x*4x+22x-34)
(16x+22x-34)
38x-34
Hopefully this is correct :)))
Rule: If x-k is a factor of p(x), then p(k) = 0. This is a special case of the remainder theorem.
Using that rule, we can see that x+5 is really x-(-5) so k = -5.
Therefore,
p(k) = 0
p(-5) = 0
so the answer is choice D.
Answer:
A
Step-by-step explanation:
Use foil to expand it.
y = 4 (x^2 + 7x - 9x - 63) Combine the like terms on the right.
y = 4(x^2 - 2x - 63) Use the distributive property to remove the brackets.
y = 4x^2 - 8x - 4*63 Combine the two multiplied factors on the right.
y = 4x^2 - 8x - 252 4* 63 = 252
The answer is A
Answer:

Step-by-step explanation:
Given the expression ![\frac{\sqrt[5]{b} }{\sqrt[]{b} }](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B5%5D%7Bb%7D%20%7D%7B%5Csqrt%5B%5D%7Bb%7D%20%7D)
![\frac{\sqrt[5]{b} }{\sqrt[]{b} } \\= \frac{b^{1/5}}{b^{1/2}} \\= b^{1/5-1/2}\\= b ^{2-5/10}\\= b^{-3/10}\\Compare \ b^n \ with \ b^{-3/10}\\\\n = -3/10](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B5%5D%7Bb%7D%20%7D%7B%5Csqrt%5B%5D%7Bb%7D%20%7D%20%5C%5C%3D%20%5Cfrac%7Bb%5E%7B1%2F5%7D%7D%7Bb%5E%7B1%2F2%7D%7D%20%5C%5C%3D%20b%5E%7B1%2F5-1%2F2%7D%5C%5C%3D%20b%20%5E%7B2-5%2F10%7D%5C%5C%3D%20b%5E%7B-3%2F10%7D%5C%5CCompare%20%5C%20b%5En%20%5C%20with%20%5C%20%20b%5E%7B-3%2F10%7D%5C%5C%5C%5Cn%20%3D%20-3%2F10)