Answer:

Explanation:
Given that there are two force of 1 pound each at right angles to each other.
The from the vector law of addition:

where:
resultant force
be the two of the forces to be added.


Answer:
Acceleration of object=
Explanation:
Given:-
Velocity (v)=24 cm/s
Time (t)=3 s
To calculate acceleration (a) of object=?
Now,




Therefore object acceleration =
Answer:
The presence of strong intermolecular forces favors a condensed state of matter. liquid or solid), while very weak intermolecular interaction favor the gaseous state.
Answer:
Probably the more correct version of the story is that Newton, upon observing an apple fall from a tree, began to think along the following lines: The apple is accelerated, since its velocity changes from zero as it is hanging on the tree and moves toward the ground. Thus, by Newton's 2nd Law there must be a force that acts on the apple to cause this acceleration. Let's call this force "gravity", and the associated acceleration the "acceleration due to gravity". Then imagine the apple tree is twice as high. Again, we expect the apple to be accelerated toward the ground, so this suggests that this force that we call gravity reaches to the top of the tallest apple tree.
Answer:
When the ball hits the ground, its velocity is -128 ft/s.
Explanation:
Hi there!
First, let's find the time it takes the ball to reach the ground (the value of t for which s(t) = 0):
s(t) = -16t² + 32t + 240
0 = -16t² + 32t + 240
Solving the quadratic equation with the quadratic formula:
t = 5.0 s (the other solution of the equation is rejected because it is negative).
Now, we have to find the velocity of the ball at t = 5.0 s.
The velocity of the ball is the change of height over time (the derivative of s(t)):
v = ds/dt = s'(t) = -32t + 32
at t = 5.0 s:
s'(5.0) = -32(5.0) + 32 = -128 ft/s
When the ball hits the ground, its velocity is -128 ft/s.