Answer:
D. 2 m/s²
Step-by-step explanation:
Initial speed of the runner (u) = 6 m/s
Final speed of the runner (v) = 14 m/s
Time taken (t) = 4 s
By using equation of motion, we get:

Acceleration of the runner (a) = 2 m/s²
Answer:
im pretty sure its c the third answer i got that one right
Explanation:
your welcome :)
<span>Distance is a scalar quantity that refers to "how much ground an object has covered" during its motion. Displacement is a vector quantity that refers to "how far out of place an object is"; it is the object's overall change in position.</span>
You can make sure there's no change in volume by keeping
your gas in a sealed jar with no leaks. Then you can play with
the temperature and the pressure all you want, and you'll know
that the volume is constant.
For 'ideal' gases,
(pressure) times (volume) is proportional to (temperature).
And if volume is constant, then
(pressure) is proportional to (temperature) .
So if you increase the temperature from 110K to 235K,
the pressure increases to (235/110) of where it started.
(400 kPa) x (235/110) = 854.55 kPa. (rounded)
Obviously, choice-b is the right one, but
I don't know where the .46 came from.