1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Hunter-Best [27]
3 years ago
12

The momentum of an object is determined to be 7.2 × 10-3 kg⋅m/s. Express this quantity as provided or use any equivalent unit. (

Note: 1 kg = 1000 g).
Physics
1 answer:
slavikrds [6]3 years ago
6 0

Answer:

Momentum, p = 7.2 g-m/s

Explanation:

It is given that,

The momentum of an object is p=7.2\times 10^{-3}\ kg-m/s

We need to express momentum in any equivalent units. There can be many solutions of this problem. Some of the units of mass are gram, milligram etc. units of length are meters, mm etc.

Since, 1 kg = 1000 gram

So, p=7.2\times 10^{-3}\times 10^3\ g-m/s

Therefore, the momentum of the object is 7.2 g-m/s. Hence, this is the required solution.

You might be interested in
What must be attached to each carburetor on a gasoline inboard engine?
alekssr [168]
To each carburetor on a gasoline inboard engine a backfire flame arrestor must be attached.This arrestor will <span>prevent flames from the backfire causing a fire on board.  Several things are important in order the backfire arrestor to function properly: 
- should be</span><span> clean and undamaged.
- If there is a hole in the grid, or oil or gasoline in the grid, or if it is not properly attached, the arrestor will not work correctly.
- must be approved </span><span>by the U.S. Coast Guard</span>
3 0
3 years ago
A 5.00 g object moving to the right at 20.0 cm/s makes an elastic head-on collision with a 10.0 g object that is initially at re
marusya05 [52]

Answer: a) 6.67cm/s b) 1/2

Explanation:

According to law of conservation of momentum, the momentum of the bodies before collision is equal to the momentum of the bodies after collision. Since the second body was initially at rest this means the initial velocity of the body is "zero".

Let m1 and m2 be the masses of the bodies

u1 and u2 be their velocities respectively

m1 = 5.0g m2 = 10.0g u1 = 20.0cm/s u2 = 0cm/s

Since momentum = mass × velocity

The conservation of momentum of the body will be

m1u1 + m2u2 = (m1+m2)v

Note that the body will move with a common velocity (v) after collision which will serve as the velocity of each object after collision.

5(20) + 10(0) = (5+10)v

100 + 0 = 15v

v = 100/15

v = 6.67cm/s

Therefore the velocity of each object after the collision is 6.67cm/s

b) kinectic energy of the 10.0g object will be 1/2MV²

= 1/2×10×6.67²

= 222.44Joules

kinectic energy of the 5.0g object will be 1/2MV²

= 1/2×5×6.67²

= 222.44Joules

= 111.22Joules

Fraction of the initial kinetic transferred to the 10g object will be

111.22/222.44

= 1/2

3 0
3 years ago
The temperature of air changes from 0 to 10°C while its velocity changes from zero to a final velocity, and its elevation change
aliya0001 [1]

Answer:

Final velocity = 119.83 m/s

Final elevation = 731.9 m

Explanation:

We are told that temperature of air changes from 0 to 10°C

Thus;

Change in temperature; ΔT = 10 - 0 = 10°C

Also, its velocity changes from zero to a final velocity. Thus;

v1 = 0 m/s

v2 is unknown

Also, its elevation changes from zero to a final elevation.

So, z1 = 0 and z2 is unknown

Now, we want to find v2 and z2 when the internal, kinetic and potential energy are equal.

Thus Equating the formula for both kinetic and internal energy gives;

½m(v2² - v1²) = mc_v•ΔT

m will cancel out and v1 is zero to give;

v2² = 2c_v•ΔT

v2 = √(2c_v•ΔT)

Where c_v is specific heat of constant volume of air with a constant value of 718 J/Kg.K

Thus;

v2 = √(2 × 718 × 10)

v2 = √14360

v2 = 119.83 m/s

To find z2, we will equate potential energy formula to that of the internal energy.

Thus;

mg(z2 - z1) = mc_v•ΔT

m will cancel out and since z1 is zero, then we have;

z2 = (c_v•ΔT)/g

z2 = 718 × 10/9.81

z2 = 731.9 m

4 0
3 years ago
What are the two categories of waves​
fredd [130]

answer: transverse and longitudinal

6 0
3 years ago
Which of the following statements best describes the relationship between force and work?
viktelen [127]

a).,  b).,  and  c).  are completely false. 
There isn't a grain of truth among them.

In Physics, the technical definition of 'Work' is (force) times (distance).

7 0
3 years ago
Other questions:
  • If you are lying down and stand up quickly, you can get dizzy or feel faint. This is because the blood vessels don’t have time t
    10·1 answer
  • Kyle, a 80.0 kg football player, leaps straight up into the air (with no horizontal velocity) to catch a pass. He catches the 0.
    11·2 answers
  • What happens when the temperature of the air cools?
    13·1 answer
  • What color does the star alpha centauri appear to be?
    6·2 answers
  • How to know if a position time graph table is balanced or unbalanced
    14·1 answer
  • If the fundamental frequency of a violin string is 440 HzHz, what is the frequency of the second harmonic?
    6·1 answer
  • Two projectiles are launched with the same initial speed from the same location, one at a 30° angle and the other at a 60° angle
    8·1 answer
  • What formula can I use to solve speed and temperature in soundwave​
    8·1 answer
  • A broken flower is an example of an inherited trait of a plant.<br><br> True Or False
    14·1 answer
  • What is the danger to spacecraft and astronauts from micrometeoroids?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!