Confirm that f and g are inverses by showing that f(g(x)) = x and g(f(x)) = x. (2 points)
1 answer:
Given:


To find:
Whether f(x) and g(x) are inverse of each other by using that f(g(x)) = x and g(f(x)) = x.
Solution:
We know that, two function are inverse of each other if:
and 
We have,


Now,
![[\because g(x)=\dfrac{8}{x}]](https://tex.z-dn.net/?f=%5B%5Cbecause%20g%28x%29%3D%5Cdfrac%7B8%7D%7Bx%7D%5D)
![[\because f(x)=\dfrac{8}{x}]](https://tex.z-dn.net/?f=%5B%5Cbecause%20f%28x%29%3D%5Cdfrac%7B8%7D%7Bx%7D%5D)


Similarly,
![[\because f(x)=\dfrac{8}{x}]](https://tex.z-dn.net/?f=%5B%5Cbecause%20f%28x%29%3D%5Cdfrac%7B8%7D%7Bx%7D%5D)
![[\because g(x)=\dfrac{8}{x}]](https://tex.z-dn.net/?f=%5B%5Cbecause%20g%28x%29%3D%5Cdfrac%7B8%7D%7Bx%7D%5D)


Since,
and
, therefore, f(x) and g(x) are inverse of each other.
You might be interested in
Answer:
33 cars please give Brainliest
Answer is A.
Thank me later lol
It snowed 57.5 in Big Bear
Because 15% of 50 is 7.5 and 50+7.5=57.5
Hope this is helped
Answer:
2x + 10 = 28
2x= 28-10
x=18/2
x= 9
Hope it helps.........
3,694 that should be your answer