<em>Greetings from Brasil...</em>
According to the statement of the question, we can assemble the following system of equation:
X · Y = - 2 i
X + Y = 7 ii
isolating X from i and replacing in ii:
X · Y = - 2
X = - 2/Y
X + Y = 7
(- 2/Y) + Y = 7 <em>multiplying everything by Y</em>
(- 2Y/Y) + Y·Y = 7·Y
- 2 + Y² = 7X <em> rearranging everything</em>
Y² - 7X - 2 = 0 <em>2nd degree equation</em>
Δ = b² - 4·a·c
Δ = (- 7)² - 4·1·(- 2)
Δ = 49 + 8
Δ = 57
X = (- b ± √Δ)/2a
X' = (- (- 7) ± √57)/2·1
X' = (7 + √57)/2
X' = (7 - √57)/2
So, the numbers are:
<h2>
(7 + √57)/2</h2>
and
<h2>
(7 - √57)/2</h2>
Answer:
-x - 3y + z
Step-by-step explanation:
Think of a imaginary 1(-1 because of the sign) in front of the parenthesis and distribute it to the other number and so x will become -x, 3y will become -3y and -z will become z because two negatives make a positive.
The answer is 310.93, rounded to the nearest hundredth. Hope this helps!
The solution is
.
Solution:
Given inequality:

Divide by 7 on both sides.


The solution is
.
The image of the graph is attached below.