1.) 35,000+6,000+65+13
2.) 25,000+ 16,000+11,000+78
The correct choice is C .
Answer:
Option 2: (1, 0) and (0, -5)
Step-by-step explanation:
Let's solve this system of equations using the elimination method.
Start by labelling the two equations.
5x -y= 5 -----(1)
5x² -y= 5 -----(2)
(2) -(1):
5x² -y -(5x -y)= 5 -5
Expand:
5x² -y -5x +y= 0
5x² -5x= 0
Factorise:
5x(x -1)= 0
5x= 0 or x -1= 0
x= 0 or x= 1
Now that we have found the x values, we can substitute them into either equations to solve for y.
Substitute into (1):
5(0) -y= 5 or 5(1) -y= 5
0 -y= 5 or -y= 5 -5
y= -5 or -y= 0
y= 0
Thus, the solutions are (0, -5) and (1, 0).
Answer: 46 years
Step-by-step explanation:
Let the father's age be x and the son's age be y, then 3 years ago:
Father = x - 3
son = y - 3
Then , from the first statement :
x - 3 = 3 ( y - 3 )
x - 3 = 3y - 9
x = 3y - 9 + 3
x = 3y - 6 .......................................... equation 1
In five years time
father = x + 5
son = y + 5
Then , from the second statement
x + 5 = 2 ( y + 5 )
x + 5 = 2y + 10
x = 2y + 10 - 5
x = 2y + 5 ........................ equation 2
Equating equation 1 and 2 , we have
3y -6 = 2y + 5
add 6 to both sides
3y = 2y + 5 + 6
subtract 2y from both sides
3y - 2y = 11
y = 11
substitute y = 11 into equation 1 to find the value of x
x = 3y - 6
x = 3(11) - 6
x = 33 - 6
x = 27
This means that the father is presently 27 years and the son is presently 11 years.
In four years time
father = 27 + 4 = 31
son = 11 + 4 = 15
sum of their ages in four years time will be
31 + 15 = 46 years
Answer:
Tori
Step-by-step explanation:
if youre making over 90 percent of your free throws, then any number (P) greater than 90 is the answer