(A) Just because every digit has an equal chance of appearing does not mean that all will be equally represented. (See "gambler's fallacy")
(B) The experimental procedure isn't exactly clear, so assuming a table of digits refers to a table of just one-digit numbers, each with 0.1 chance of appearing (which means you can think of the digits 0-9), you should expect any given digit to appear about 0.1 or 10% of the time.
So if a table consists of 1000 digits, one could expect 7 to appear in 10% of the table, or about 100 times.
Answer:I need the answer too if u got it let me know please!
Step-by-step explanation:
Answer:
y - intercept = 2.25
Step-by-step explanation:
y = mx + c
Where,
y = Total cost
x = additional cost
m = slope
c = y - intercept
y = 0.25x + 2.25
Relating with the above equation,
y - intercept = 2.25
Slope, m = 0.25
Answer:
The answer is below
Step-by-step explanation:
1)
mean (μ) = 12, SD(σ) = 2.3, sample size (n) = 65
Given that the confidence level (c) = 90% = 0.9
α = 1 - c = 0.1
α/2 = 0.05
The z score of α/2 is the same as the z score of 0.45 (0.5 - 0.05) which is equal to 1.65
The margin of error (E) is given as:

The confidence interval = μ ± E = 12 ± 0.47 = (11.53, 12.47)
2)
mean (μ) = 23, SD(σ) = 12, sample size (n) = 45
Given that the confidence level (c) = 88% = 0.88
α = 1 - c = 0.12
α/2 = 0.06
The z score of α/2 is the same as the z score of 0.44 (0.5 - 0.06) which is equal to 1.56
The margin of error (E) is given as:

The confidence interval = μ ± E = 23 ± 2.8 = (22.2, 25.8)
Given that f(x) = x/(x - 3) and g(x) = 1/x and the application of <em>function</em> operators, f ° g (x) = 1/(1 - 3 · x) and the domain of the <em>resulting</em> function is any <em>real</em> number except x = 1/3.
<h3>How to analyze a composed function</h3>
Let be f and g functions. Composition is a <em>binary function</em> operation where the <em>variable</em> of the <em>former</em> function (f) is substituted by the <em>latter</em> function (g). If we know that f(x) = x/(x - 3) and g(x) = 1/x, then the <em>composed</em> function is:



The domain of the function is the set of x-values such that f ° g (x) exists. In the case of <em>rational</em> functions of the form p(x)/q(x), the domain is the set of x-values such that q(x) ≠ 0. Thus, the domain of f ° g (x) is
.
To learn more on composed functions: brainly.com/question/12158468
#SPJ1