Answer:
The probability that you get zero questions correct is 0.4096
The probability that you get one questions correct is 0.4096
The probability that you get three questions correct is 0.0256
Step-by-step explanation:
These probability can be describe with a Binomial Distribution. These distribution can be used when we have n identical and independent situations in which there is a probability p or probability of success and a probability q or probability of fail. Additionally q is equal to 1 - p. The probability of x for a situation in which we can apply binomial distribution is:

Where x is the variable that says the number of success in the n situations
And nCx is calculate as:

From the question we can identify that:
- n is equal to 4 multiple choice question
- p is 1/5 or 0.2, the probability of get one question correct
- q is 4/5 or 0.8, the probability of get one question incorrect
Then the probability of get zero questions correct of 4 questions is:

The probability of get one question correct of 4 questions is:

The probability of get three questions correct of 4 questions is:

34, all angles in a triangle when added together must equal 180.
First we have to get x by itself, so we multiply two on each side,
then we get 5x=660/4, I like to simplify here, so I would change it to 5x=165, then we divide each side by 5
x=33
:)
Ok, first put in the -2 for each b. That gives:
|-4(-2)-8|+|-1(-(-2))^2|+2(-2)^3
Let's do each section.
The first section is |-4(-2)-8)|
-4 times -2 is 8, minus 8 is 0. The absolute value of 0 is still 0.
Now we move on to |-1(-(-2))^2)|
First we do exponents
-(-2) is 2, and 2^2 is 4. 4 times -1 is -4. The absolute value of -4 is 4
Now the last section, 2(-2)^3
Exponents first: (-2)^3 is -2 * -2 * -2, which is -8.
-8*2=-16.
0+4+(-16)=-12