......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
First for 7 we need to find out how many ninths are in a third and there are 3/9 in a third so now we multiply 3/9 by 2 which is 6/9 now we subtract 7/9-6/9 which is 1/9 so 1/9 is left. (Iff I'm wrong sorry I did this is like a minute.)
Answer:
The correct option is B
B) The graph will be a solid line with a y-intercept of negative four and a slope of seven. The graph will be shaded above the line.
Step-by-step explanation:
The given equation is
y ≥ 7x - 4
Consider only the equality sign:
y = 7x-4
or
y = 7x + (-4)
The general form of any linear equation is given by:
y = mx + c
By comparing, we can see that:
m = slope = 7
Secondly consider the equation
y ≥ 7x - 4
We know that generally for the signs "equal to and greater/smaller than", we use a solid line, and for the signs "greater/smaller than", we use a dashed line.
Hence, to graph this equation we'll use a solid line.
Thirdly, find y intercept by putting x=0
y = 7(0) - 4
y = -4
The correct option is B
Answer:
(x-4), (x-2)
i think this is what you're looking for