The coordinates of vertex B' is
.
<h3>
How to calculate the coordinate of point by reflection</h3>
A point if reflected across the line
by means of the following formula:
(1)
Where:
- Original point
- x-Coordinate of point P
- Resulting point
If we know that
and
, then the coordinates of the vertex is:
![P'(x,y) = (-2, 4) + 2\cdot [(-2,-2)-(-2,4)]](https://tex.z-dn.net/?f=P%27%28x%2Cy%29%20%3D%20%28-2%2C%204%29%20%2B%202%5Ccdot%20%5B%28-2%2C-2%29-%28-2%2C4%29%5D)



The coordinates of vertex B' is
. 
To learn more on reflections, we kindly invite to check this verified question: brainly.com/question/1878272
<em>BD</em> = 56
Step-by-step explanation:
Step 1: In rectangle, the diagonals are congruent and bisect each other.
So, <em>AC</em> = <em>BD</em>
⇒<em>AG</em> + <em>GC</em> = <em>BG</em> + <em>GD</em>
⇒<em>AG</em> + <em>AG</em> = <em>GD</em> + <em>GD</em>
⇒ 2<em>AG</em> = 2<em>GD</em>
⇒<em>AG</em> = <em>GD</em>
⇒ –7<em>j </em>+ 7 = 5<em>j</em> + 43
⇒–7<em>j</em> – 5<em>j</em> = 43 – 7
⇒–12<em>j</em> = 36
⇒<em>j</em> = –3
Step 2: <em>BD</em> = 2<em>DG</em>
<em>BD</em> = 2(5<em>j</em> + 43)
= 2(5 (–3) + 43)
= 2(–15 + 43)
= 2 × 28
= 56
Hence, <em>BD</em> = 56.

Let's find out the gradient (Slope " m ") of line q ;



Now, since we already know the gradient let's find of the equation of line by using its Slope and one of the points using point slope form of line :


Now, plug in the value of gradient ~

here we can clearly observe that, the Area under the curve can easily be represented as :

Since, all the values of y that lies in the shaded region is smaller than the actual value of y for the corresponding values of x in the equation of line q
Answer:
Sabemos que:
L es el largo de la avenida.
En la primer etapa se asfalto la mitad, L/2, entonces lo que queda por asfaltar es:
L - L/2 = L/2.
En la segunda etapa se asfalto la quinta parte, L/5, entonces lo que queda por asfaltar es:
L/2 - L/5 = 5*L/10 - 2*L/10 = (3/10)*L
En la tercer etapa se asfalto la cuarta parte del total, L/4, entonces lo que queda por asfaltar es:
(3/10)*L - L/4 = 12*L/40 - 10L/40 = (2/40)*L
Y sabemos que este ultimo pedazo que queda por asfaltar es de 200m:
(2/40)*L = 200m
L = 200m*(40/2) = 4,000m