Answer:
<h2>
![(f \circ g)(x) = |x + 8| - 8](https://tex.z-dn.net/?f=%28f%20%20%5Ccirc%20g%29%28x%29%20%3D%20%20%7Cx%20%20%2B%20%208%7C%20%20-%208)
</h2>
Step-by-step explanation:
![f(x) = x - 8 \\ \\ g(x) = |x + 8|](https://tex.z-dn.net/?f=f%28x%29%20%3D%20x%20-%208%20%5C%5C%20%20%5C%5C%20g%28x%29%20%3D%20%20%7Cx%20%2B%208%7C%20)
To find (f ∘ g)(x) , substitute g(x) into f(x). That is for every x in f (x) replace it with g (x)
That's
<h3>
![(f \circ g)(x) = |x + 8| - 8](https://tex.z-dn.net/?f=%28f%20%20%5Ccirc%20g%29%28x%29%20%3D%20%20%7Cx%20%20%2B%20%208%7C%20%20-%208)
</h3>
Hope this helps you
Answer:
so idc![\sqrt[n]{x} \sqrt{x} \alpha \pi x^{2} \\ \left \{ {{y=2} \atop {x=2}} \right. x_{123} \int\limits^a_b {x} \, dx \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right]](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Bx%7D%20%5Csqrt%7Bx%7D%20%5Calpha%20%5Cpi%20x%5E%7B2%7D%20%5C%5C%20%5Cleft%20%5C%7B%20%7B%7By%3D2%7D%20%5Catop%20%7Bx%3D2%7D%7D%20%5Cright.%20x_%7B123%7D%20%5Cint%5Climits%5Ea_b%20%7Bx%7D%20%5C%2C%20dx%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20a_n%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%263%5C%5C4%265%266%5C%5C7%268%269%5Cend%7Barray%7D%5Cright%5D)
443
Step-by-step explanation: its 2 6\7
Answer:
<em>5.5</em>
Step-by-step explanation:
Given the set of data
5, 4, 2, 1, 1, 2, 10, 2, 3, 5.
The average of the least and the greatest value is known as the midrange
The formula for calculating the midrange is expressed as shown:
Midrange = (Greatest value + Least value)/2
Given
Greatest value = 10
Least value = 1
Midrange = 10+1/2
Midrange = 11/2
Midrange = 5.5
<em>Hence the midrange of the data is 5.5</em>
<span>Commutative Property is the property in which you can move around numbers in numerical operations like, addition and multiplication while retaining their result. In contrast to subtraction and division in which position is an important factor for every result, here it is regardless. </span>Why might you want to use this property?<span>Well, most importantly it suits the operation of addition and hence, to ensure the arrangement of the number is in symmetric proportion to its counterpart such as 3 + 2=2 + 3. Or rather, understanding that the equations in both sides are but the same and equal in sum. Thus, this is much more usable or will make more sense if used in a larger scale of complex equations and integers.<span>
</span></span>