Answer:
The correct option is G.Hope this help!!
<h3>
<u>Explanation</u></h3>
- Given the system of equations.

- Solve the system of equations by eliminating either x-term or y-term. We will eliminate the y-term as it is faster to solve the equation.
To eliminate the y-term, we have to multiply the negative in either the first or second equation so we can get rid of the y-term. I will multiply negative in the second equation.

There as we can get rid of the y-term by adding both equations.

Hence, the value of x is 3. But we are not finished yet because we need to find the value of y as well. Therefore, we substitute the value of x in any given equations. I will substitute the value of x in the second equation.

Hence, the value of y is 4. Therefore, we can say that when x = 3, y = 4.
- Answer Check by substituting both x and y values in both equations.
<u>First</u><u> </u><u>Equation</u>

<u>Second</u><u> </u><u>Equation</u>

Hence, both equations are true for x = 3 and y = 4. Therefore, the solution is (3,4)
<h3>
<u>Answer</u></h3>

Answer:
Option b is correct (8,13).
Step-by-step explanation:
7x - 4y = 4
10x - 6y =2
it can be represented in matrix form as![\left[\begin{array}{cc}7&-4\\10&-6\end{array}\right] \left[\begin{array}{c}x\\y\end{array}\right] = \left[\begin{array}{c}4\\2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D7%26-4%5C%5C10%26-6%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D4%5C%5C2%5Cend%7Barray%7D%5Cright%5D)
A=
X= ![\left[\begin{array}{c}x\\y\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D)
B= ![\left[\begin{array}{c}4\\2\end{array}\right]](https://tex.z-dn.net/?f=%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D4%5C%5C2%5Cend%7Barray%7D%5Cright%5D)
i.e, AX=B
or X= A⁻¹ B
A⁻¹ = 1/|A| * Adj A
determinant of A = |A|= (7*-6) - (-4*10)
= (-42)-(-40)
= (-42) + 40 = -2
so, |A| = -2
Adj A=
A⁻¹ =
/ -2
A⁻¹ = ![\left[\begin{array}{cc}3&-2\\5&-7/2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%26-2%5C%5C5%26-7%2F2%5Cend%7Barray%7D%5Cright%5D%20)
X= A⁻¹ B
X= ![\left[\begin{array}{cc}3&-2\\5&-7/2\end{array}\right] *\left[\begin{array}{c}4\\2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%26-2%5C%5C5%26-7%2F2%5Cend%7Barray%7D%5Cright%5D%20%2A%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D4%5C%5C2%5Cend%7Barray%7D%5Cright%5D)
X= ![\left[\begin{array}{c}(3*4) + (-2*2)\\(5*4) + (-7/2*2)\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D%283%2A4%29%20%2B%20%28-2%2A2%29%5C%5C%285%2A4%29%20%2B%20%28-7%2F2%2A2%29%5Cend%7Barray%7D%5Cright%5D)
X= ![\left[\begin{array}{c}12-4\\20-7\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D12-4%5C%5C20-7%5Cend%7Barray%7D%5Cright%5D)
X= ![\left[\begin{array}{c}8\\13\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%5C%5C13%5Cend%7Barray%7D%5Cright%5D)
x= 8, y= 13
solution set= (8,13).
Option b is correct.