Answer:
There are two choices for angle Y:
for
,
for
.
Step-by-step explanation:
There are mistakes in the statement, correct form is now described:
<em>In triangle XYZ, measure of angle X = 49°, XY = 18 and YZ = 14. Find the measure of angle Y:</em>
The line segment XY is opposite to angle Z and the line segment YZ is opposite to angle X. We can determine the length of the line segment XZ by the Law of Cosine:
(1)
If we know that
,
and
, then we have the following second order polynomial:

(2)
By the Quadratic Formula we have the following result:

There are two possible triangles, we can determine the value of angle Y for each by the Law of Cosine again:



1) 
![Y = \cos^{-1}\left[\frac{18^{2}+14^{2}-15.193^{2}}{2\cdot (18)\cdot (14)} \right]](https://tex.z-dn.net/?f=Y%20%3D%20%5Ccos%5E%7B-1%7D%5Cleft%5B%5Cfrac%7B18%5E%7B2%7D%2B14%5E%7B2%7D-15.193%5E%7B2%7D%7D%7B2%5Ccdot%20%2818%29%5Ccdot%20%2814%29%7D%20%5Cright%5D)

2) 
![Y = \cos^{-1}\left[\frac{18^{2}+14^{2}-8.424^{2}}{2\cdot (18)\cdot (14)} \right]](https://tex.z-dn.net/?f=Y%20%3D%20%5Ccos%5E%7B-1%7D%5Cleft%5B%5Cfrac%7B18%5E%7B2%7D%2B14%5E%7B2%7D-8.424%5E%7B2%7D%7D%7B2%5Ccdot%20%2818%29%5Ccdot%20%2814%29%7D%20%5Cright%5D)

There are two choices for angle Y:
for
,
for
.
Answer:
Rounding to nearest hundredths gives us r=0.06.
So r is about 6%.
Step-by-step explanation:
So we are given:

where


.


Divide both sides by 1600:

Simplify:

Take the 6th root of both sides:
![\sqrt[6]{\frac{23}{16}}=1+r](https://tex.z-dn.net/?f=%5Csqrt%5B6%5D%7B%5Cfrac%7B23%7D%7B16%7D%7D%3D1%2Br)
Subtract 1 on both sides:
![\sqrt[6]{\frac{23}{16}}-1=r](https://tex.z-dn.net/?f=%5Csqrt%5B6%5D%7B%5Cfrac%7B23%7D%7B16%7D%7D-1%3Dr)
So the exact solution is ![r=\sqrt[6]{\frac{23}{16}}-1](https://tex.z-dn.net/?f=r%3D%5Csqrt%5B6%5D%7B%5Cfrac%7B23%7D%7B16%7D%7D-1)
Most likely we are asked to round to a certain place value.
I'm going to put my value for r into my calculator.
r=0.062350864
Rounding to nearest hundredths gives us r=0.06.
I apologize, but we would need the chart included below the questions to be able to answer this.
Answer:
The amount of jobs from fitting industry shall decline in 5.5 percent from 2015 to 2025.
Step-by-step explanation:
Due to the assumption of a yearly average rate, a linear function model shall be used. The expected amount of jobs (
) after a certain amount of years (t) is given by the following formula:

Where:
- Initial amount of jobs in pipe fitting industry, measured in thousands.
- Average yearly rate, measured in thousands per year. (A decline is indicated by a negative sign)
If
,
and
, then:


The percent change in jobs from pipe fitting industry is calculated as follows:



The amount of jobs from fitting industry shall decline in 5.5 percent from 2015 to 2025.