The 4th term of an arithmetic sequence is 24 and the 12th term is 56, what is the first term?
2 answers:
Answer:
First term = 12
Step-by-step explanation:
A4 = 24
A12 = 56
An = A1 + (n-1)d; this defines the formula of an arithmetic series
A4 = 24 = A1 + (4-1)d
A4 = 24 = A1 + 3d
A12 = 56 = A1 + (12-1)d
A12 = 56 = A1 + 11d
Subtract A4 from A12 to get d (distance)
(56 = A1 + 11d) - (24 = A1 +3d)
32 = 8d
d = 4
Substitute d = 4 into A4
A4 = 24 = A1 + 3(d)
24 = A1 + 3(4)
24 = A1 + 12
24 - 12 = A1
12 = A1
First term = 12
Solution:
A4 = 24
A12 = 56
An = A1 + (n-1)d; this defines the formula of an arithmetic series
A4 = 24 = A1 + (4-1)d
A4 = 24 = A1 + 3d
A12 = 56 = A1 + (12-1)d
A12 = 56 = A1 + 11d
Subtract A4 from A12 to get d (distance)
(56 = A1 + 11d) - (24 = A1 +3d)
32 = 8d
d = 4
Substitute d = 4 into A4
A4 = 24 = A1 + 3(d)
24 = A1 + 3(4)
24 = A1 + 12
24 - 12 = A1
12 = A1
You might be interested in
You might have to multiply or divide I just started learn g that stuff and I do t understand it still
Answer:
Y=$15x+$20
Step-by-step explanation:
Step-by-step explanation:
when means of more than two groups are to be compared, ANOVA is perferred