Answer:
2nd option x=-12.........
Answer:
Both Scott and Tara have responded correctly.
Step-by-step explanation:
we know that
The area of a trapezoid is equal to
A=(1/2)[b1+b2]h
we have
b1=16 cm
b2=24 cm
h=8 cm -----> <em>Note</em> The height is 8 cm instead of 18 cm
substitute
A=(1/2)[16+24](8)
A=160 cm²
<em>Verify Scott 's work</em>
<em>Note</em> Scott wrote A = (1/2)(24 + 16)(8) instead of A = 2(24 + 16)(8)
Remember that the Commutative Property establishes "The order of the addends does not alter its result"
so
(24+16)=(16+24)
A = (1/2)(24 + 16)(8)=160 cm²
<em>Verify Tara's work</em>
<em>Note</em> Tara wrote A = (1/2)(16+24)(8) instead of A = (16 + 24)(8)
A = (1/2)(16+24)(8)=160 cm²
Answer:
a) volume = 321.55 in³
Step-by-step explanation:
volume = 4/3πr³ = 4/3(3.14)4.25³) = 321.55 in³
Answer:
The equations shows a difference of squares are:
<u>10y²- 4x²</u> $ <u>6y²- x²</u>
Step-by-step explanation:
the difference of two squares is a squared number subtracted from another squared number, it has the general from Ax² - By²
We will check the options to find which shows a difference of squares.
1) 10y²- 4x²
The expression is similar to the general form, so the equation represents a difference of squares.
It can be factored as (√10 y + 2x )( √10 y - 2x)
2) 6y²- x²
The expression is similar to the general form, so the equation represents a difference of squares.
It can be factored as (√6y + x )( √6y - x)
3) 8x²−40x+25
The expression is not similar to the general form, so the equation does not represent a difference of squares.
4) 64x²-48x+9
The expression is not similar to the general form, so the equation does not represent a difference of squares.
A segment bisector is a segment, ray, line, or plane that intersects a given segment at its midpoint.
For example, in the diagram shown, line SQ bisects segment PR because line SQ intersects segment PR at its midpoint which is Q.