Answer:
B
Step-by-step explanation:
The equation of a line in slope- intercept form is
y = mx + c ( m is the slope and c the y- intercept )
Rearrange 2x + 3y = 4 into this form
Subtract 2x from both sides
3y = - 2x + 4 ( divide all terms by 3 )
y = -
x +
← in slope- intercept form
with slope m = - 
Given a line with slope m then the slope of a line perpendicular to it is
= -
= -
=
, hence
y =
x + c ← is the partial equation of the perpendicular line
To find c substitute (- 2, 15) into the partial equation
15 = - 3 + c ⇒ c = 15 + 3 = 18
y =
x + 18 → B
Answer:
joe mamma!!!
Step-by-step explanation:
Answer:
In First method : counting up, counting back on a number line,
If we want the quotient after dividing the number by 5 then we count how many 5 we get from 0 to the dividend.
For example : 
Since, from 0 to 30 there are six 5's obtained. ( because 5 × 6 = 30 )
Thus, 
In Second Method : dividing by 10, and then doubling the quotient.
First we divide the number by 10 then multiply the quotient by 2.
For Example: 
Since, 

Thus, 
Now, when we compare the above methods then we conclude that for the smaller numbers first method is appropriate because for small numbers we can easily count total 5's from 0. While for large numbers Second method is appropriate because it is hard to count the total 5's for the large number.
Each square represents 8
If it is 10×10 then there is 100 squares
800÷100=8
Answer:
Step-by-step explanation:
a) We have 15! as the product of 1 to 15 natural numbers. Since 17 is prime there will be no factor common to these
By actual division we find
15! (mod 17) =16
From this we deduce
even 16! mod 17 = 16 = -1
According to Wilson theorem
(17-1)! = -1 mod 17
Thus verified 17 is prime
Hence 15! (mod 17) =-1=16
-----------------------
b) 2(26!) is divided by 29
Since 29 is prime
(29-1)! = -1 mod 29
28! = -1 mod 29 = 28
When divided this gives 25 as remainder