Answer:option C= mRNA
Explanation:
MACROMOLECULES are large molecules, such as protein, commonly created by the polymerization of smaller sub-units called monomers.
The NUCLEAR PORE is a protein-lined channel in the nuclear envelope. The NUCLEAR PORE regulates the transportation of molecules between the nucleus and the cytoplasm. In eukaryotic cells, the nucleus is separated from the cytoplasm and surrounded by a nuclear envelope.
mRNA is synthesized by DNA during a process known as the TRANSCRIPTION. After the synthesis, the new molecule moves from the nucleus to the cytoplasm. It passes through the nuclear membrane through a NUCLEAR PORE. Then, it will later join with a ribosome, which is just coming together from its two sub-units, one large and one small.
A design of growth in which (occurs only in a different situation), the population frequency of an organism rises gradually originally, in a good acceleration time, later progresses swiftly nearing an exponential growth pace just like the J-shaped curve, however, it later declines (meaning rejects) in a bad acceleration time till at zero growth rate the population maintains. For example, yeast is a tiny fungus, so tiny, a microscope is required to view it, furthermore, it is used to produce bread and alcoholic drinks, displays the traditional S-shaped curve if raised in a test tube. Its maturity levels off as the population deplete the nutrients that are essential for its growth.
Answer:
1. Metaphase II - Chromosomes are lined up by spindle fibers.
2. Telophase II - Nuclear envelope forms around each set of DNA.
3. Anaphase II - Sister chromatids are pulled apart.
4. Prophase II - Centromeres move toward the poles of the cell
Explanation:
Answer:
Narrow-spectrum antibiotics target a few types of bacteria. Broad-spectrum antibiotics target many types of bacteria. Both types work well to treat infections. But using broad-spectrum antibiotics when they're not needed can create antibiotic-resistant bacteria that are hard to treat.
We can tell from their structure that fatty acids are a good source of energy because of their large number of carbon-hydrogen and carbon-carbon bonds that they contain. Most fatty acids have straight chain compounds with an even number of carbon.