Given:
Number of black marbles = 6
Number of white marbles = 6
Let's determine the least number of marbles that can be chosen to be certain that you have chosen two marble of the same color.
To find the least number of marble to be chosen to be cartain you have chosen two marbles of the same color, we have:
Total number of marbles = 6 + 6 = 12
Number of marbles to ensure at least one black marble is chosen = 6 + 1 = 7
Number of marbles to ensure at least one white marble is chosen = 1 + 6 = 7
Therefore, the least number of marbles that you must choose, without looking , to be certain that you have chosen two marbles of the same color is 7.
ANSWER:
7
<span>Inflection points are where the function changes concavity. Since concave up corresponds to a positive second derivative and concave down corresponds to a negative second derivative, then when the function changes from concave up to concave down (or vise versa) the second derivative must equal zero at that point. So the second derivative must equal zero to be an inflection point. But don't get excited yet. You have to make sure that the concavity actually changes at that point.</span>
Answer:
15inch
Step-by-step explanation:
X^2=8^2+7^2
Here is the answer for this question.
Answer:
always
The answer to the question is C.