Answer:
a) The general solution   θ = nπ±π/6
 The all solutions are  - π/6 ,π/6 ,5π/6 ,7π/6 ,11π/6 ,13π/6 ...…
b)   The solutions in the interval [ 0,2π)
                             θ =  - π/6 ,π/6 , 5π/6 , 7π/6 , 11π/6
Step-by-step explanation:
<u><em>Step( i)</em></u>:-
Given an equation 2 cos (2θ)-1 =0
                                2 cos (2θ) = 1
                                 cos(2θ) = 1/2
                                 cos(2θ) = cos (π/3)
<em>Step(ii):-</em>
<em>a) </em>
The general solution of  cos θ = cos ∝ is given by 
                                               θ = 2nπ±∝
The general solution of  cos(2θ) = cos (π/3) is 
                                                2θ = 2nπ±π/3
                                                 θ = nπ±π/6
Put n=0          θ =  ±π/6
 Put n =1          θ = π±π/6 
                        θ = π-π/6 = 5π/6 
                         θ = π+π/6 = 7π/6 
put n =2
                         θ = 2π±π/6  
                          θ = 2π-π/6 = 11π/6 
                         θ = 2π+π/6 = 13π/6 
     
 The all solutions are  - π/6 ,π/6 ,5π/6 ,7π/6 ,11π/6 ,13π/6 ...…
b) 
         The solutions in the interval [ 0,2π)
                             θ =  - π/6 ,π/6 , 5π/6 , 7π/6 , 11π/6
<u><em>Final answer</em></u>:-
a) 
 The all solutions are  - π/6 ,π/6 ,5π/6 ,7π/6 ,11π/6 ,13π/6 ...…
b) 
The solutions in the interval [ 0,2π)
                             θ =  - π/6 ,π/6 , 5π/6 , 7π/6 , 11π/6