1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tino4ka555 [31]
3 years ago
6

Find the points of intersection of the graphs involving the following pair of functions.

Mathematics
1 answer:
jeka57 [31]3 years ago
4 0

Answer:

The point of intersection is ( \frac{-1\pm\sqrt{5}}{2}, 0)

Step-by-step explanation:

f(x) = 2x^2 + 3x - 3 and g(x) = - x^2

By equating them

2x^2 + 3x - 3 = -x^2

3x^2 + 3 x - 3 =  0

x^2 + x - 1 = 0

x^2 +x - 1 = 0 \\\\x = \frac{-1\pm\sqrt{5}}{2}

You might be interested in
Solve the following equation by completing the square. 3x^2-3x-5=13
mr Goodwill [35]

we'll start off by grouping some

\bf 3x^2-3x-5=13\implies (3x^2-3x)-5=13\implies 3(x^2-x)-5=13 \\\\\\ 3(x^2-x)=18\implies (x^2-x)=\cfrac{18}{3}\implies (x^2-x)=6\implies (x^2-x+~?^2)=6

so we have a missing guy at the end in order to get the a perfect square trinomial from that group, hmmm, what is it anyway?

well, let's recall that a perfect square trinomial is

\bf \qquad \textit{perfect square trinomial} \\\\ (a\pm b)^2\implies a^2\pm \stackrel{\stackrel{\text{\small 2}\cdot \sqrt{\textit{\small a}^2}\cdot \sqrt{\textit{\small b}^2}}{\downarrow }}{2ab} + b^2

so we know that the middle term in the trinomial, is really 2 times the other two without the exponent, well, in our case, the middle term is just "x", well is really -x, but we'll add the minus later, we only use the positive coefficient and variable, so we'll use "x" to find the last term.

\bf \stackrel{\textit{middle term}}{2(x)(?)}=\stackrel{\textit{middle term}}{x}\implies ?=\cfrac{x}{2x}\implies ?=\cfrac{1}{2}

so, there's our fellow, however, let's recall that all we're doing is borrowing from our very good friend Mr Zero, 0, so if we add (1/2)², we also have to subtract (1/2)²

\bf \left( x^2 -x +\left[ \cfrac{1}{2} \right]^2-\left[ \cfrac{1}{2} \right]^2 \right)=6\implies \left( x^2 -x +\left[ \cfrac{1}{2} \right]^2 \right)-\left[ \cfrac{1}{2} \right]^2=6 \\\\\\ \left(x-\cfrac{1}{2} \right)^2=6+\cfrac{1}{4}\implies \left(x-\cfrac{1}{2} \right)^2=\cfrac{25}{4}\implies x-\cfrac{1}{2}=\sqrt{\cfrac{25}{4}} \\\\\\ x-\cfrac{1}{2}=\cfrac{\sqrt{25}}{\sqrt{4}}\implies x-\cfrac{1}{2}=\cfrac{5}{2}\implies x=\cfrac{5}{2}+\cfrac{1}{2}\implies x=\cfrac{6}{2}\implies \boxed{x=3}

6 0
3 years ago
Estimate quotient using multiples, 136÷6
lana66690 [7]
136/6 = 22.6666667......
3 0
3 years ago
Read 2 more answers
You are designing a miniature golf course and need to calculate the surface area and volume of many of the objects that will be
laiz [17]
a. To solve the first part, we are going to use the formula for the surface area of a sphere: A=4 \pi r^2
where
A is the surface area of the sphere
r is the radius of the sphere
We know from our problem that r=5ft; so lets replace that value in our formula:
A=4 \pi (5ft)^2
A=314.16ft^2

To solve the second part, we are going to use the formula for the volume of a sphere: V= \frac{4}{3}  \pi r^3
Where
V is the volume of the sphere
r is the radius 
We know form our problem that r=5ft, so lets replace that in our formula:
V= \frac{4}{3}  \pi (5ft)^3
V=523.6ft^3

We can conclude that the surface area of the sphere is 314.16 square feet and its volume is 523.6 cubic feet.

b. To solve the first part, we are going to use the formula for the surface area of a square pyramid: A=a^2+2a \sqrt{ \frac{a^2}{4} +h^2}
where
A is the surface area
a is the measure of the base
h is the height of the pyramid 
We know form our problem that a=8ft and h=12ft, so lets replace those value sin our formula:
A=(8ft)^2+2(8ft) \sqrt{ \frac{(8ft)^2}{4} +(12ft)^2}
A=266.39ft^2

To solve the second part, we are going to use the formula for the volume of a square pyramid: V=a^2 \frac{h}{3}
where
V is the volume 
a is the measure of the base
h is the height of the pyramid
We know form our problem that a=8ft and h=12ft, so lets replace those value sin our formula:
V=(8ft)^2 \frac{(12ft)}{3}
V=256ft^3

We can conclude that the surface area of our pyramid is 266.39 square feet and its volume is 256 cubic feet.

c. To solve the first part, we are going to use the formula for the surface area of a circular cone: A= \pi r(r+ \sqrt{h^2+r^2}
where
A is the surface area
r is the radius of the circular base
h is the height of the cone
We know form our problem that r=5ft and h=8ft, so lets replace those values in our formula:
A= \pi (5ft)[(5ft)+ \sqrt{(8ft)^2+(5ft)^2}]
A=226.73ft^2

To solve the second part, we are going to use the formula for the volume os a circular cone: V= \pi r^2 \frac{h}{3}
where
V is the volume
r is the radius of the circular base
h is the height of the cone 
We know form our problem that r=5ft and h=8ft, so lets replace those values in our formula:
V= \pi (5ft)^2 \frac{(8ft)}{3}
V=209.44ft^3

We can conclude that the surface area of our cone is 226.73 square feet and its surface area is 209.44 cubic feet.

d. To solve the first part, we are going to use the formula for the surface area of a rectangular prism: A=2(wl+hl+hw)
where
A is the surface area
w is the width
l is the length 
h is the height
We know from our problem that w=6ft, l=10ft, and h=16ft, so lets replace those values in our formula:
A=2[(6ft)(10ft)+(16ft)(10ft)+(16ft)(6ft)]
A=632ft^2

To solve the second part, we are going to use the formula for the volume of a rectangular prism: V=whl
where
V is the volume 
w is the width
l is the length 
h is the height
We know from our problem that w=6ft, l=10ft, and h=16ft, so lets replace those values in our formula:
V=(6ft)(16ft)(10ft)
V=960ft^3

We can conclude that the surface area of our solid is 632 square feet and its volume is 960 cubic feet.

e.  Remember that a face of a polygon is a side of polygon.
    - A sphere has no faces.
    - A square pyramid has 5 faces.
    - A cone has 1 face.
    - A rectangular prism has 6 faces.
Total faces: 5 + 1 + 6 = 12 faces

<span>We can conclude that there are 12 faces in on the four geometric shapes on the holes.
</span>
f. Remember that an edge is a line segment on the boundary of the polygon.
   - A sphere has no edges.
   - A cone has no edges.
   - A rectangular pyramid has 8 edges.
   - A rectangular prism has 12 edges.
Total edges: 8 + 20 = 20 edges

Since we have 20 edges in total, we can conclude that your boss will need 20 brackets on the four shapes.

g. Remember that the vertices are the corner points of a polygon.
   - A sphere has no vertices.
   - A cone has no vertices.
   - A rectangular pyramid has 5 vertices.
   - A rectangular prism has 8 vertices.
Total vertices: 5 + 8 = 13 vertices

We can conclude that there are 0 vertices for the sphere and the cone; there are 5 vertices for the pyramid, and there are are 8 vertices for the solid (rectangular prism). We can also conclude that your boss will need 13 brackets for the vertices of the four figures.

7 0
3 years ago
Suppose 123 people voted for Danny. If 55 of the votes were from girls, what would be the ratio of votes from girls to votes fro
MakcuM [25]

Answer:

68 to 55 hope this helps

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
The table below follows the rule y = kx, where k is the constant of proportionality,
777dan777 [17]
I would say c.15
Because I said so
8 0
3 years ago
Other questions:
  • 3x-5y=60<br> 4x+5y=-4<br> what is the system of linear equation
    10·1 answer
  • How are the values of the eights related in 880?
    5·1 answer
  • PLZ ANSWER ASAP (EASY)
    10·1 answer
  • Evaluate the expression 3x + 21 for x=3
    8·1 answer
  • A construction company is analyzing which of its older projects need renovation. Building B was built two years before building
    14·1 answer
  • Need help please this question is very confusing i would love some help
    12·1 answer
  • What is 3/6 plus 1/3
    11·2 answers
  • A car drives 270 miles and can drive 13.5 miles per litre of diesel. Diesel
    10·2 answers
  • Phillip created the net worth statement shown
    10·1 answer
  • Solve for x. Geometry problem.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!