1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nezavi [6.7K]
3 years ago
14

The two dot plots below show the heights of some sixth graders and some seventh graders: The mean absolute deviation (MAD) for t

he first set of data is 1.2 and the MAD for the second set of data is 1.7. Approximately how many times the variability in the heights of the sixth graders is the variability in the heights of the seventh graders
Mathematics
1 answer:
AysviL [449]3 years ago
4 0

Answer:

The number of times the variability in the heights of the sixth graders is the variability in the heights of the seventh graders is approximately 1.4

Step-by-step explanation:

From the question, the mean absolute deviation (MAD) of the sixth graders = 1.2 and that of the seventh graders = 1.7

The variability in the heights of the sixth graders = 1.2

The variability in the heights of the seventh graders = 1.7

To calculate how many times the variability in the heights of the sixth graders is the variability in the heights of the seventh graders, we will divide the variability of the seventh graders by the variability of the sixth graders

That is, 1.7/ 1.2 = 1.4167 ≅ 1.4

Hence, the number of times the variability in the heights of the sixth graders is the variability in the heights of the seventh graders is approximately 1.4

You might be interested in
A+b=180<br> A=-2x+115<br> B=-6x+169<br> What is the value of B?
natulia [17]
The answer is:  " 91 " .   
___________________________________________________
                    →    " B = 91 " .
__________________________________________________ 

Explanation:
__________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  
_____________________________________________________
METHOD 1)
_____________________________________________________
Solve for "x" ; and then plug the solved value for "x" into the expression given for "B" ; to  solve for "B"
_____________________________________________________

(115 − 2x) + (169 − 6x) = 

  115 − 2x + 169 − 6x = ?

→ Combine the "like terms" ;  as follows:

      + 115 + 169 = + 284 ; 

 − 2x − 6x = − 8x ; 
_________________________________________________________
And rewrite as:

 " − 8x + 284 " ; 
_________________________________________________________
   →  " - 8x + 284 = 180 " ; 

Subtract:  "284" from each side of the equation:

  →  "  - 8x + 284 − 284 = 180 − 284 " ; 

to get:

 →  " -8x = -104 ; 

Divide EACH SIDE of the equation by "-8 " ; 
    to isolate "x" on one side of the equation; & to solve for "x" ; 

→ -8x / -8 = -104/-8 ; 

→  x = 13
__________________________________________________________
Now, to find the value of "B" :
__________________________________________________________
  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  

↔  B = 169 − 6x ;  

         = 169 − 6(13) ;   ===========> Plug in our "solved value, "13",  for "x" ;

         = 169 − (78) ; 

         = 91 ;

   B   = " 91 " .
__________________________________________________
The answer is:  " 91 " . 
____________________________________________________
     →     " B = 91 " . 
____________________________________________________
Now;  let us check our answer:
____________________________________________________
               →   A + B = 180 ;  
____________________________________________________
Plug in our "solved answer" ; which is "91", for "B" ;  as follows:
________________________________________________________

→  A + 91 = ? 180? ;  

↔  A = ? 180 − 91 ? ; 

→  A = ?  -89 ?  Yes!
________________________________________________________
→  " A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

Plug in our solved value for "x"; which is: "13" ; 

" A = 115 − 2x " ; 

→  A = ? 115 − 2(13) ? ;

→  A = ? 115 − (26) ? ; 

→  A = ? 29 ? Yes!
_________________________________________________ 
METHOD 2)
_________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→  Solve for the value of "B" :
_______________________________________________________
 A + B = 180 ;  

→ B = 180 − A ; 

→ B = 180 − (115 − 2x) ; 

→ B = 180 − 1(115 − 2x) ;  ==========> {Note the "implied value of "1" } ; 
__________________________________________________________
Note the "distributive property" of multiplication:__________________________________________________  a(b + c)  = ab +  ac ;  <u><em>AND</em></u>:
  a(b − c)  = ab − ac .________________________________________________________
Let us examine the following part of the problem:
________________________________________________________
              →      " − 1(115 − 2x)  " ; 
________________________________________________________

→  "  − 1(115 − 2x) " = (-1 * 115) − (-1 * 2x) ;

                                =  -115 − (-2x) ;
                         
                                =  -115  +  2x ;        
________________________________________________________
So we can bring down the:  " {"B = 180 " ...}"  portion ; 

→and rewrite:
_____________________________________________________

→  B = 180 − 115 + 2x ; 

→  B = 65 + 2x ; 
_____________________________________________________
Now;  given:   "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→ " B =  169 − 6x  =  65 + 2x " ; 
______________________________________________________
→  " 169 − 6x  =  65 + 2x "

Subtract "65" from each side of the equation;  & Subtract "2x" from each side of the equation:

→  169 − 6x − 65 − 2x  =  65 + 2x − 65 − 2x ; 

to get:

→   " - 8x + 104 = 0 " ;
 
Subtract "104" from each side of the equation:

→   " - 8x + 104 − 104 = 0 − 104 " ;

to get: 

→   " - 8x = - 104 ;

Divide each side of the equation by "-8" ; 
   to isolate "x" on one side of the equation; & to solve for "x" ; 

→  -8x / -8  = -104 / -8 ; 

to get:

→  x =  13 ; 
______________________________________________________

Now, let us solve for:  " B " ;  → {for which this very question/problem asks!} ; 

→  B = 65 + 2x ;  

Plug in our solved value, " 13 ",  for "x" ; 

→ B = 65 + 2(13) ; 

        = 65 + (26) ;  

→ B =  " 91 " .
_______________________________________________________
Also, check our answer:
_______________________________________________________
Given:  "B = - 6x + 169 " ;   ↔  B = 169 − 6x = 91 ; 

When "x  = 13 " ; does: " B = 91 " ? 

→ Plug in our "solved value" of " 13 " for "x" ;

      → to see if:  "B = 91" ; (when "x = 13") ;

→  B = 169 − 6x ; 

         = 169 − 6(13) ; 

         = 169 − (78)______________________________________________________
→ B = " 91 " . 
______________________________________________________
6 0
3 years ago
6. Why is it helpful to have both lines on the same graph? (2 points)
Eva8 [605]

Answer:Line graphs can give a quick analysis of data. You're able to quickly tell the range, minimum/maximum, as well as if there are any gaps or clusters. This also means that it can easily observe changes over a certain period of time. When drawing them, you're able to use exact values from your data.

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
The width of a rectangle is 3ft less than the length. The perimeter is 62ft. Find the length and width of the rectangle.
Assoli18 [71]
I believe the length of the rectangle is 17 ft and the width is 14
8 0
3 years ago
In 2004, Cindy had $4000 in a mutual fund account. In 2005, the
gtnhenbr [62]
6,250
1,000/4,000 = 25/100
25/100 = x/5,000
x = 1,250

5,000 + 1,250 = 6,250
4 0
3 years ago
Factor the trinomial below.
Shtirlitz [24]
Option C is your answer. 
8 0
3 years ago
Read 2 more answers
Other questions:
  • You need to form a 10-inch by 15-inch piece of tin into a box (with no top) by cutting a square from each corner and folding up
    9·1 answer
  • What re the answers to 20-30
    13·1 answer
  • 4(g-1)=24 what is g please help
    5·2 answers
  • marian is a sprinter, running short distances on the track team. she wants to find how fast she runs in miles per hour. what uni
    7·1 answer
  • -9x/x-x^2 how do you simplify?
    7·1 answer
  • 0.39 as a fraction in its simplest form
    8·1 answer
  • Which expression gives the y-intercept of the line when the equation is in standard form?
    6·1 answer
  • -8 + 4m = 2. What is m?​
    13·1 answer
  • The cheetah runs 100 miles in 4 hours. What speed does it run
    7·2 answers
  • Please help me on this question hery hard 5x5=
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!