1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
djverab [1.8K]
3 years ago
12

What is the area of the Rhombus?

Mathematics
1 answer:
dusya [7]3 years ago
8 0

Answer:

b

Step-by-step explanation:

You might be interested in
Simplify<br> (2x-³y⁴)³(x³+y⁰)÷(4xy-²)³​
elena-14-01-66 [18.8K]

Answer:

Step-by-step explanation:

-4x³(-2x³)

8x⁶

(6⁵)/(6⁴)

6

(3x³)³

27x⁹

(9¹²)/(9⁸)

9⁴

(x²)(x³)

x⁵

(x⁴)/(x²)

x²

-x(-x)(x)

x³

(x³y²)/(x³y⁴)

(1)/(y²)

-2x(x²)(-3x)

6x⁴

(9x⁷)/(3x⁶)

3x

3x²(x²)(-6)

-18x⁴

x/(x³)

1/(x²)

Upgrade to remove ads

Only $47.88/year

(x⁴)(x³)

x⁷

(12x⁵)/(36x)

x⁴/3

(x⁴y³)/(x⁴y)

y²

(-2x³)(-4x²)

8x⁵

(-3x²)³

-27x⁶

(x³y⁵)/(xy²)

x²y³

2x³(10x)³

2000x⁶

(x⁷y²)/(x⁴y²)

x³

x⁻⁴

1/x⁴

(-21x⁵y²)/(7x⁴y⁵)

-(3x)/y³

3x⁻³

3/x³

(32x³y²z⁵)/(-8xyz²)

-4x²yz³

...

x⁴y⁴

(4x⁷/7y²)²

(16x¹⁴)/(49y⁴)

...

8x³

4⁻⁴

1/(4⁴) or 1/256

...

a⁵

8⁻²

1/(8²) or 1/64

...

2c⁷

x⁻²

1/x²

...

9x²

x⁻³

1/x³

...

a⁴

x⁻⁴

1/x⁴

...

4c⁵

x²y⁻³

(x²)/(y³)

When multiplying monomials with the same base, ___________ the exponents

add

x³y⁻²

(x³)/(y²)

When dividing monomials with the same base, ______________ the exponents

subtract

x²y³z⁻⁴

(x²y³)/(z⁴)

When raising a power to a power, ________________ the exponents

multiply

x²y⁻³z⁴

(x²z⁴)/(y³)

x⁻²y⁻³

1/(x²y³)

A base raised to a zero exponent equals________________

one

(2m²)(2m³)

4m⁵

(x/y)⁻¹

y/x

4r⁻³(2r²)

8÷r

(x²/y²)⁻¹

y²/x²

2x³y⁻³(2x⁻¹y³)

4x²

(x³/y³)⁻¹

y³/x³

2y²(3x)

6y²x

(x/y)⁻²

y²/x²

4a³b²(3a⁻⁴b⁻³)

12÷(ab)

(x²/y²)⁻³

y⁶/x⁶

4r⁰

4

(2/3)⁻²

9/4

(4xy)⁻¹

1÷(4xy)

(4/5)⁻²

25/16

(3/4)⁻²

16/9

(3/4)⁻¹

4/3

(x³/x⁻⁶)

x⁹

(x²/x⁻⁵)

x⁷

x⁰

1

y⁰

1

x²y⁰

x²

x²y³z⁰

x²y³

y⁰

1

100⁰

1

(-99)⁰

1

x⁰(x⁴)(x⁻⁶)

1/x²

(x⁻³)/(x⁴)

1/x⁷

(x⁻⁴)/(x⁵)

1/x⁹

(4x³/2x⁵)⁰

1

(x⁻⁵y⁴)/(z⁻²)

(y⁴z²)/x⁵

(15x⁶y⁻⁹)/(5xy⁻¹¹)

3x⁵y²

(48x⁶y⁷z⁵)/(-6xy⁵z⁶)

-(8x⁵y²)/z

Is it a monomial? 11

Yes; 11 is a real number and an example of a constant.

Is it a monomial? a - b

No; this is the difference, not the product, of two variables.

Is it a monomial? p²/r²

No; this is the quotient, not the product, of two variables.

Is it a monomial? y

Yes; single variables are monomials.

Is it a monomial? j³k

Yes; this is the product of two variables.

Is it a monomial? 2a + 3b

No; this is the sum of two monomials.

Simplify x²(x³)(x⁶)

x¹¹

Simplify x(x²)(x⁷)

x¹⁰

Simplify (y²z)(yz²)

y³z³

Simplify (y²z²)(y³z)

y⁵z³

Simplify (a²b⁴)(a²b⁴)

a⁴b⁸

Simplify (ab²)(a³b²)

a⁴b⁴

Simplify (2x²)(3x⁵)

6x⁷

Simplify (5x⁷)(4x²)

20x⁹

Simplify (4xy³)(3x³y⁵)

12x⁴y⁸

Simplify (7x⁵y²)(x²y³)

7x⁷y⁵

Simplify (-5x³)(3x⁸)

-15x¹¹

Simplify (-2x⁴y)(-4xy)

8x⁵y²

Simplify (10²)³

10⁶ or 1,000,000

Simplify (x³)¹²

x³⁶

Simplify (-6x)²

36x²

(-3x)³

-27x³

(3xy²)²

9x²y⁴

(2x³y⁴)²

4x⁶y⁸

Find the area of a rectangle if the length is x² and the width is x⁵.

x⁷

Find the area of a square if the side length is xy.

x²y²

Find the area of a triangle with base 9x³ and height 4x.

18x⁴

Simplify (-5x²y)(3x⁴)

-15x⁶y

Simplify (2ab²c²)(4a³b²c²)

8a⁴b⁴c⁴

Simplify (3xy⁴)(-2x²)

-6x³y⁴

(4x³y)(-2x⁵)

-8x⁸y

(-15xy⁴)(-xy³)

15x²y⁷

(-xy)³(xz)

-x⁴y³z

(-4x²y)²(-½xy²)

-8x⁵y⁴

(0.2x²y³)²

0.04x⁴y⁶

(½xy³)²

¼x²y⁶

(0.4x³)³

0.064x⁹

[(x²)²]²

x⁸

[(x²)³]⁴

x²⁴

Find the area of a rectangle whose length is 6x²y⁴ and width is 3xy²

18x³y⁶

Find the area of a triangle whose base is 4x²y and height is 6xy³

12x³y⁴

Find the volume of a cube whose side length is 3x².

27x⁶

Find the volume of a rectangular prism whose side lengths are x³y, xy³, and y.

x⁴y⁵

5 0
2 years ago
(6y + 3) minus (3y + 6) when y=7
never [62]

Answer:

y

Step-by-step explanation:

((((2•3y3) -  22y2) -  3y) -  —) -  2

                               y    

STEP

4

:

Rewriting the whole as an Equivalent Fraction

4.1   Subtracting a fraction from a whole

Rewrite the whole as a fraction using  y  as the denominator :

                      6y3 - 4y2 - 3y     (6y3 - 4y2 - 3y) • y

    6y3 - 4y2 - 3y =  ——————————————  =  ————————————————————

                            1                     y          

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

STEP

5

:

Pulling out like terms

5.1     Pull out like factors :

  6y3 - 4y2 - 3y  =   y • (6y2 - 4y - 3)

Trying to factor by splitting the middle term

5.2     Factoring  6y2 - 4y - 3

The first term is,  6y2  its coefficient is  6 .

The middle term is,  -4y  its coefficient is  -4 .

The last term, "the constant", is  -3

Step-1 : Multiply the coefficient of the first term by the constant   6 • -3 = -18

Step-2 : Find two factors of  -18  whose sum equals the coefficient of the middle term, which is   -4 .

     -18    +    1    =    -17

     -9    +    2    =    -7

     -6    +    3    =    -3

     -3    +    6    =    3

     -2    +    9    =    7

     -1    +    18    =    17

Observation : No two such factors can be found !!

Conclusion : Trinomial can not be factored

Adding fractions that have a common denominator :

5.3       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

y • (6y2-4y-3) • y - (6)     6y4 - 4y3 - 3y2 - 6

————————————————————————  =  ———————————————————

           y                          y        

Equation at the end of step

5

:

 (6y4 - 4y3 - 3y2 - 6)    

 ————————————————————— -  2

           y              

STEP

6

:

Rewriting the whole as an Equivalent Fraction :

6.1   Subtracting a whole from a fraction

Rewrite the whole as a fraction using  y  as the denominator :

        2     2 • y

   2 =  —  =  —————

        1       y  

Checking for a perfect cube :

6.2    6y4 - 4y3 - 3y2 - 6  is not a perfect cube

Trying to factor by pulling out :

6.3      Factoring:  6y4 - 4y3 - 3y2 - 6

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  -3y2 - 6

Group 2:  6y4 - 4y3

Pull out from each group separately :

Group 1:   (y2 + 2) • (-3)

Group 2:   (3y - 2) • (2y3)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

6.4    Find roots (zeroes) of :       F(y) = 6y4 - 4y3 - 3y2 - 6

Polynomial Roots Calculator is a set of methods aimed at finding values of  y  for which   F(y)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  y  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  6  and the Trailing Constant is  -6.

The factor(s) are:

of the Leading Coefficient :  1,2 ,3 ,6

of the Trailing Constant :  1 ,2 ,3 ,6

Let us test ....

  P    Q    P/Q    F(P/Q)     Divisor

     -1       1        -1.00        1.00    

     -1       2        -0.50        -5.88    

     -1       3        -0.33        -6.11    

     -1       6        -0.17        -6.06    

     -2       1        -2.00        110.00    

Note - For tidiness, printing of 13 checks which found no root was suppressed

Polynomial Roots Calculator found no rational roots

Adding fractions that have a common denominator :

6.5       Adding up the two equivalent fractions

(6y4-4y3-3y2-6) - (2 • y)      6y4 - 4y3 - 3y2 - 2y - 6

—————————————————————————  =  ————————————————————————

            y                            y            

Polynomial Roots Calculator :

6.6    Find roots (zeroes) of :       F(y) = 6y4 - 4y3 - 3y2 - 2y - 6

    See theory in step 6.4

In this case, the Leading Coefficient is  6  and the Trailing Constant is  -6.

The factor(s) are:

of the Leading Coefficient :  1,2 ,3 ,6

of the Trailing Constant :  1 ,2 ,3 ,6

Let us test ....

  P    Q    P/Q    F(P/Q)     Divisor

     -1       1        -1.00        3.00    

     -1       2        -0.50        -4.88    

     -1       3        -0.33        -5.44    

     -1       6        -0.17        -5.73    

     -2       1        -2.00        114.00    

Note - For tidiness, printing of 13 checks which found no root was suppressed

Polynomial Roots Calculator found no rational roots

Final result :

 6y4 - 4y3 - 3y2 - 2y - 6

 ————————————————————————

            y            

4 0
3 years ago
Read 2 more answers
1/2 3/4 1/2 <br> a. 5/8 <br> b. 5/4 <br> c.1 3/4 <br> d. 1 7/4
Sever21 [200]
I think the correct answer would be C. hope this helped !
8 0
3 years ago
Read 2 more answers
A car is traveling at a speed of 25 meters per second what is the cars speed in kilometers per hour how many kilometers will the
Likurg_2 [28]

Answer:

  • 90 km/h
  • 180 km

Step-by-step explanation:

There are 1000 m in 1 km, and 3600 s in 1 h, so the speed conversion is ...

  \dfrac{25\,m}{s}\cdot\dfrac{1\,km}{1000\,m}\cdot\dfrac{3600\,s}{1\,h}=\dfrac{90\,km}{h}

The car's speed is 90 km/h.

__

In 2 hours, the car will travel ...

  distance = speed · time = (90 km/h)(2 h) = 180 km

7 0
3 years ago
5 eights greater than 2 thirds
beks73 [17]
No 5/8 is not greater then 2/3, 5/8 is just 1/24 smaller then 2/3.
4 0
3 years ago
Other questions:
  • Action hero mambo ('the moose with no mercy') has just finished for film for his latest movie. Due to his unique acting style he
    13·1 answer
  • An interior angle of a regular convex polygon is 135°. How many sides does the polygon have? A. 9 B. 8 C. 10 D. 11
    10·2 answers
  • Which transformations are needed to change the parent cosine function to y= 3cos(10(x-pi) )?
    13·2 answers
  • A closet contains 7 shirts, 6 skirts, and 4 pairs of shoes. how many possible outfit combinations are there?
    7·2 answers
  • Una fábrica produce tres tipos de balones de fútbol, con un costo mensual de
    8·1 answer
  • Can someone please help me?
    14·2 answers
  • OA) 65° OB) 70° OC) 50° OD 120°​
    11·1 answer
  • G(n) = -50 - 15n<br> Complete the recursive formula of g(n).<br> g(1) =<br> g(n) = g(n-1)+
    12·1 answer
  • PLEASE HELP PLEAAE HURRY ANS NO LINKS PLEASE I REALLY NEED THE ANSWER
    15·2 answers
  • Please help ASAP!! I need to turn this is right now!!!!
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!