Try to relax. Your desperation has surely progressed to the point where
you're unable to think clearly, and to agonize over it any further would only
cause you more pain and frustration.
I've never seen this kind of problem before. But I arrived here in a calm state,
having just finished my dinner and spent a few minutes rubbing my dogs, and
I believe I've been able to crack the case.
Consider this: (2)^a negative power = (1/2)^the same power but positive.
So:
Whatever power (2) must be raised to, in order to reach some number 'N',
the same number 'N' can be reached by raising (1/2) to the same power
but negative.
What I just said in that paragraph was: log₂ of(N) = <em>- </em>log(base 1/2) of (N) .
I think that's the big breakthrough here.
The rest is just turning the crank.
Now let's look at the problem:
log₂(x-1) + log(base 1/2) (x-2) = log₂(x)
Subtract log₂(x) from each side:
log₂(x-1) - log₂(x) + log(base 1/2) (x-2) = 0
Subtract log(base 1/2) (x-2) from each side:
log₂(x-1) - log₂(x) = - log(base 1/2) (x-2) Notice the negative on the right.
The left side is the same as log₂[ (x-1)/x ]
==> The right side is the same as +log₂(x-2)
Now you have: log₂[ (x-1)/x ] = +log₂(x-2)
And that ugly [ log to the base of 1/2 ] is gone.
Take the antilog of each side:
(x-1)/x = x-2
Multiply each side by 'x' : x - 1 = x² - 2x
Subtract (x-1) from each side:
x² - 2x - (x-1) = 0
x² - 3x + 1 = 0
Using the quadratic equation, the solutions to that are
x = 2.618
and
x = 0.382 .
I think you have to say that <em>x=2.618</em> is the solution to the original
log problem, and 0.382 has to be discarded, because there's an
(x-2) in the original problem, and (0.382 - 2) is negative, and
there's no such thing as the log of a negative number.
There,now. Doesn't that feel better.
Since it's an estimate, probably 103<span />
6+6
8+4
9+3
10+2
11+1
Hope this helps!
Simple, first find a common denominator, 24.
So,
7/4*6= 42/24
and
5/6*6=30/24
Then just add,
42/24
+
30/24
Making it 72/24.
72/24=3
Thus, your answer is, 3.
∆BOC is equilateral, since both OC and OB are radii of the circle with length 4 cm. Then the angle subtended by the minor arc BC has measure 60°. (Note that OA is also a radius.) AB is a diameter of the circle, so the arc AB subtends an angle measuring 180°. This means the minor arc AC measures 120°.
Since ∆BOC is equilateral, its area is √3/4 (4 cm)² = 4√3 cm². The area of the sector containing ∆BOC is 60/360 = 1/6 the total area of the circle, or π/6 (4 cm)² = 8π/3 cm². Then the area of the shaded segment adjacent to ∆BOC is (8π/3 - 4√3) cm².
∆AOC is isosceles, with vertex angle measuring 120°, so the other two angles measure (180° - 120°)/2 = 30°. Using trigonometry, we find

where
is the length of the altitude originating from vertex O, and so

where
is the length of the base AC. Hence the area of ∆AOC is 1/2 (2 cm) (4√3 cm) = 4√3 cm². The area of the sector containing ∆AOC is 120/360 = 1/3 of the total area of the circle, or π/3 (4 cm)² = 16π/3 cm². Then the area of the other shaded segment is (16π/3 - 4√3) cm².
So, the total area of the shaded region is
(8π/3 - 4√3) + (16π/3 - 4√3) = (8π - 8√3) cm²