Answer: You are correct. The mode is between 90 and 100
This is because the tallest bar corresponds to this interval. The mode is the most frequent value.
Answer:
13/6
Step-by-step explanation:
1 Simplify \sqrt{8}
8
to 2\sqrt{2}2
2
.
\frac{2}{6\times 2\sqrt{2}}\sqrt{2}-(-\frac{18}{\sqrt{81}})
6×2
2
2
2
−(−
81
18
)
2 Simplify 6\times 2\sqrt{2}6×2
2
to 12\sqrt{2}12
2
.
\frac{2}{12\sqrt{2}}\sqrt{2}-(-\frac{18}{\sqrt{81}})
12
2
2
2
−(−
81
18
)
3 Since 9\times 9=819×9=81, the square root of 8181 is 99.
\frac{2}{12\sqrt{2}}\sqrt{2}-(-\frac{18}{9})
12
2
2
2
−(−
9
18
)
4 Simplify \frac{18}{9}
9
18
to 22.
\frac{2}{12\sqrt{2}}\sqrt{2}-(-2)
12
2
2
2
−(−2)
5 Rationalize the denominator: \frac{2}{12\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{2\sqrt{2}}{12\times 2}
12
2
2
⋅
2
2
=
12×2
2
2
.
\frac{2\sqrt{2}}{12\times 2}\sqrt{2}-(-2)
12×2
2
2
2
−(−2)
6 Simplify 12\times 212×2 to 2424.
\frac{2\sqrt{2}}{24}\sqrt{2}-(-2)
24
2
2
2
−(−2)
7 Simplify \frac{2\sqrt{2}}{24}
24
2
2
to \frac{\sqrt{2}}{12}
12
2
.
\frac{\sqrt{2}}{12}\sqrt{2}-(-2)
12
2
2
−(−2)
8 Use this rule: \frac{a}{b} \times c=\frac{ac}{b}
b
a
×c=
b
ac
.
\frac{\sqrt{2}\sqrt{2}}{12}-(-2)
12
2
2
−(−2)
9 Simplify \sqrt{2}\sqrt{2}
2
2
to \sqrt{4}
4
.
\frac{\sqrt{4}}{12}-(-2)
12
4
−(−2)
10 Since 2\times 2=42×2=4, the square root of 44 is 22.
\frac{2}{12}-(-2)
12
2
−(−2)
11 Simplify \frac{2}{12}
12
2
to \frac{1}{6}
6
1
.
\frac{1}{6}-(-2)
6
1
−(−2)
12 Remove parentheses.
\frac{1}{6}+2
6
1
+2
13 Simplify.
\frac{13}{6}
6
13
Done
Answer:
1 7/18
Step-by-step explanation:
5/9 + 5/6 write all numerators above the least common denominator which is 18.
10+15/18 then you add the numerators which will make it 25/18 which alternative form will be 1 7/18, or in decimal 1.38
1st one 17/100 2nd one 0.25
Because 0.17 would be like 17% out of 100% so the fraction simplified is 17/100
2. Since the area of a square is length×length
But according to the question we are asked to find the length and the area is given so we will have to solve this
L×L= area
L^2=0.25
Square root both sides
L=√0.25
L=0.5
Therefore the length of the square is 0.5