Answer:
The dimensions of the rectangle are 8 by 7 centimeters.
Step-by-step explanation:
The length of a rectangle is 13 centimeters less than three times its width. In other words:
![\ell = 3w-13](https://tex.z-dn.net/?f=%5Cell%20%3D%203w-13)
Given that the area of the rectangle is 56 square centimeters, we want to determine its dimensions.
Recall that the area of a rectangle is given by:
![A = w \ell](https://tex.z-dn.net/?f=A%20%3D%20w%20%5Cell)
Substitute in known values and equations:
![(56)=w(3w-13)](https://tex.z-dn.net/?f=%2856%29%3Dw%283w-13%29)
Solve for <em>w</em>. Distribute:
![3w^2-13w=56](https://tex.z-dn.net/?f=3w%5E2-13w%3D56)
Isolate the equation:
![3w^2-13w-56=0](https://tex.z-dn.net/?f=3w%5E2-13w-56%3D0)
Factor. We want to find two numbers that multiply to 3(-56) = -168 and that add to -13.
-21 and 8 suffice. Hence:
![3w^2 - 21w + 8w - 56 = 0 \\ \\ 3w(w-7) + 8(w-7) = 0 \\ \\ (3w+8)(w-7) = 0](https://tex.z-dn.net/?f=3w%5E2%20-%2021w%20%2B%208w%20-%2056%20%3D%200%20%5C%5C%20%5C%5C%203w%28w-7%29%20%2B%208%28w-7%29%20%3D%200%20%5C%5C%20%5C%5C%20%283w%2B8%29%28w-7%29%20%3D%200)
Zero Product Property:
![3w+8=0\text{ or } w-7=0](https://tex.z-dn.net/?f=3w%2B8%3D0%5Ctext%7B%20or%20%7D%20w-7%3D0)
Solve for each case:
![\displaystyle w = -\frac{8}{3} \text{ or } w=7](https://tex.z-dn.net/?f=%5Cdisplaystyle%20w%20%3D%20-%5Cfrac%7B8%7D%7B3%7D%20%5Ctext%7B%20or%20%7D%20w%3D7)
Since the width cannot be negative, we can ignore the first solution.
Therefore, the width of the rectangle is seven centimeters.
Thus, the length will be:
![\ell = 3(7) - 13 = 8](https://tex.z-dn.net/?f=%5Cell%20%3D%203%287%29%20-%2013%20%3D%208)
Thus, the dimensions of the rectangle are 8 by 7 centimeters.