1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
faust18 [17]
3 years ago
15

A museum gift shop manager wants to put 1,644 polished rocks into small bags to sell as souvenirs. If the shop manager wants to

put 13 rocks in each bag, how many complete bags can be filled? How many rocks will be left over?
Mathematics
1 answer:
klemol [59]3 years ago
3 0
You’ll need to divide 1,644 and 13 since the manager wants to put 1,644 polished rocks into small bags. And 13 rocks is how much will be in each bag. So you’ll do 1,644/ 15 = 109 with 6 left over. Hope it’s correct :)
You might be interested in
forty-seven marbles are shared between some children. each child receives six marbles and there are five marbles left over. how
Nadya [2.5K]

The total number of children can be calculated using linear equation in one variable. The marbles are shared among 7children.

<u>Solution</u>

Total number of marbles = 47

The number of marbles received by each child = 6

Let the number of children be x

Then according to the question'

Total number of marbles received by all children + 5 = Total number of marbles

6x + 5 = 47

6x = 47- 5

6x = 42

x = 7

now, the number of children is 7.

<h3>What is linear equation in one variable?</h3>
  • An equation is said to be linear if the maximum power of the variable is consistently 1. Another name for it is a one-degree equation.
  • A linear equation with one variable has the conventional form Ax + B = 0. In this case, the variables x and A are variables, while B is a constant. A linear equation with two variables has the conventional form Ax + By = C.
  • Here, the variables x and y, the coefficients A and B, and the constant C are all present.
  • A linear equation's graph will always be a straight line.
  • One-variable linear equations are fairly simple to solve. To determine the value of the unknown variable, the variables are divided and placed on one side of the equation, and the constants are combined and placed on the other side.

Know more about linear equation brainly.com/question/12974594

#SPJ4

6 0
2 years ago
Unit 3 parallel and perpendicular lines homework 4 parallel line proofs
Alex17521 [72]

Answer:

1) c ║ d by consecutive interior angles theorem

2) m∠3 + m∠6 = 180° by transitive property

3) ∠2 ≅ ∠5 by definition of congruency

4) t ║ v                                    {}                   Corresponding angle theorem

5) ∠14 and ∠11  are supplementary         {}  Definition of supplementary angles

6) ∠8 and ∠9  are supplementary    {}        Consecutive  interior angles theorem

Step-by-step explanation:

1) Statement                                {}                                     Reason

m∠4 + m∠7 = 180°                                 {}   Given

m∠4 ≅ m∠6                                {}              Vertically opposite angles

m∠4 = m∠6                               {}                Definition of congruency

m∠6 + m∠7 = 180°                                {}    Transitive property

m∠6 and m∠7 are supplementary     {}     Definition of supplementary angles

∴ c ║ d                               {}                       Consecutive interior angles theorem

2) Statement                                {}                                     Reason

m∠3 = m∠8                                 {}           Given

m∠8 + m∠6 = 180°                {}                 Sum of angles on a straight line

∴ m∠3 + m∠6 = 180°               {}               Transitive property

3) Statement                                {}                                     Reason

p ║ q                                 {}                    Given

∠1 ≅ ∠5                               {}                  Given

∠1 = ∠5                               {}                   Definition of congruency

∠2 ≅ ∠1                               {}                  Alternate interior angles theorem

∠2 = ∠1                               {}                   Definition of congruency

∠2 = ∠5                                  {}               Transitive property

∠2 ≅ ∠5                                  {}              Definition of congruency.

4) Statement                                {}                                     Reason

∠1 ≅ ∠5                                  {}                Given

∠3 ≅ ∠4                               {}                  Given

∠1 = ∠5                               {}                   Definition of congruency

∠3 = ∠4                               {}                  Definition of congruency

∠5 ≅ ∠4                               {}                 Vertically opposite angles

∠5 = ∠4                               {}                  Definition of congruency

∠5 = ∠3                                  {}               Transitive property

∠1 = ∠3                                  {}                Transitive property

∠1 ≅ ∠3                                  {}                Definition of congruency.

t ║ v                                    {}                   Corresponding angle theorem

5) Statement                                {}                                     Reason

∠5 ≅ ∠16                                  {}              Given

∠2 ≅ ∠4                               {}                  Given

∠5 = ∠16                               {}                  Definition of congruency

∠2 = ∠4                               {}                   Definition of congruency

EF ║ GH                               {}                  Corresponding angle theorem

∠14 ≅ ∠16                               {}                Corresponding angles

∠14 = ∠16                               {}                 Definition of congruency

∠5 = ∠14                                  {}               Transitive property

∠5 + ∠11 = 180°                {}                       Sum of angles on a straight line

∠14 + ∠11 = 180°                                {}      Transitive property

∠14 and ∠11  are supplementary         {}  Definition of supplementary angles  

6) Statement                                {}                                     Reason

l ║ m                                 {}                      Given

∠4 ≅ ∠7                               {}                  Given

∠4 = ∠7                               {}                   Definition of congruency

∠2 ≅ ∠7                               {}                  Alternate angles

∠2 = ∠7                               {}                   Definition of congruency

∠2 = ∠4                                  {}               Transitive property

∠2 ≅ ∠4                               {}                  Definition of congruency

∠2 and ∠4 are corresponding angles   {} Definition

DA ║ EB                               {}                  Corresponding angle theorem

∠8 and ∠9  are consecutive  interior angles    {} Definition

∠8 and ∠9  are supplementary    {}        Consecutive  interior angles theorem.

6 0
3 years ago
Find the area of this trapezoid. Area = _______ square units. Round to the nearest whole number.
fredd [130]

Answer:

119 square units

Step-by-step explanation:

To find the area of a trapezoid, use this formula: (a+b)/2 * h

Substitute 24, 10, and 7 for a, b, and h, respectively.

((24 + 10)/2) * 7

<em>Step 1: Add 24 and 10 to get 34.</em>

(34/2) * 7

<em>Step 2: Divide 34 by 2 to get 17.</em>

17 * 7

<em>Step 3: Multiply 17 by 7 to get 119</em>

119

The area of this trapezoid is 119 square units.

4 0
3 years ago
Read 2 more answers
If a function uses variables other than x and y for its input and output variables, you take the original equation and solve for
grandymaker [24]
For the answer to the question, i<span>f a function uses variables other than x and y for its input and output variables, you take the original equation and solve for the input variable to find the inverse.

The answer is Simply true. But in real life it's false.

I hope my answer helped you.</span>
5 0
3 years ago
Read 2 more answers
alfredo bought a fishing pole for 60 off it's original price of $97 if the tax was 4% how much did alfredo pay for the fishing p
Agata [3.3K]

Answer:

$40.4

Step-by-step explanation:

The regular price of the fishing rod is $97

There is a 60% discount from that price.

The discount is equal to 60% of $97 which is equal to .60 * $97 which is equal to $58.2

Discount is like a markdown, so subtract $58.2 from the price of the item before the change to get $97 - $58.2 = $38.8 

This is the price of the item before tax is applied.

Now you apply the sales tax of 4%.

4% of $38.8 is equal to .04 * $38.8 which is equal to $1.552

Tax is like a markup, so add $1.552 to the price of the item before tax was applied to get a selling price of $38.8 + $1.552 which is equal to $40.352

Round it up and the answer is $40.4

3 0
3 years ago
Other questions:
  • Solve for x if 7x =21 a. X=-3 b.x=14 c. =3 d. X= -14
    15·1 answer
  • If the side lengths of a cube are dilated from 10 yards to 31 yards, find the scale factor that relates the area of one face of
    15·1 answer
  • Ali receives a 10% pay
    10·1 answer
  • Factor 3x^2y^2-2xy^2-8y^2
    5·1 answer
  • Solve for y <br> q(a+y)=67y+93
    9·1 answer
  • Shante is calculating the amount of time it takes a rocket to get to the moon. The moon is around 239,000 miles from Earth. How
    12·1 answer
  • Dan rolls a fair dice and flips a fair coin. What is the probability of obtaining an even number and a head
    11·1 answer
  • Need help!!!!!!!!!!!!!!!!!!!
    5·2 answers
  • The y value is two less than twice the x-value
    12·1 answer
  • What is the size of the angle, below? <br> please help me
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!