Hi
Bhrkhgabdjvdlsihsldvasdlwdwlij
first off let's notice that the height is 11 meters and the volume of the cone is 103.62 cubic centimeters, so let's first convert the height to the corresponding unit for the volume, well 1 meters is 100 cm, so 11 m is 1100 cm.
![\textit{volume of a cone}\\\\ V=\cfrac{\pi r^2 h}{3}~~ \begin{cases} r=radius\\ h=height\\[-0.5em] \hrulefill\\ V=\stackrel{cm^3}{103.62}\\ h=\stackrel{cm}{1100} \end{cases}\implies 103.62=\cfrac{\pi r^2 (1100)}{3} \\\\\\ 3(103.62)=1100\pi r^2\implies \cfrac{3(103.62)}{1100\pi }=r^2 \\\\\\ \sqrt{\cfrac{3(103.62)}{1100\pi }}=r\implies \stackrel{cm}{0.00510199305952} \approx r](https://tex.z-dn.net/?f=%5Ctextit%7Bvolume%20of%20a%20cone%7D%5C%5C%5C%5C%20V%3D%5Ccfrac%7B%5Cpi%20r%5E2%20h%7D%7B3%7D~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%20h%3Dheight%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20V%3D%5Cstackrel%7Bcm%5E3%7D%7B103.62%7D%5C%5C%20h%3D%5Cstackrel%7Bcm%7D%7B1100%7D%20%5Cend%7Bcases%7D%5Cimplies%20103.62%3D%5Ccfrac%7B%5Cpi%20r%5E2%20%281100%29%7D%7B3%7D%20%5C%5C%5C%5C%5C%5C%203%28103.62%29%3D1100%5Cpi%20r%5E2%5Cimplies%20%5Ccfrac%7B3%28103.62%29%7D%7B1100%5Cpi%20%7D%3Dr%5E2%20%5C%5C%5C%5C%5C%5C%20%5Csqrt%7B%5Ccfrac%7B3%28103.62%29%7D%7B1100%5Cpi%20%7D%7D%3Dr%5Cimplies%20%5Cstackrel%7Bcm%7D%7B0.00510199305952%7D%20%5Capprox%20r)
Answer:
Step-by-sitstep explanation:
so its easy add ab and after that add the x
Answer:
Can u show the whole question
It’s the first one.............