Answer:
5 inches
Step-by-step explanation:
See attachment for explanation.
The first step for solving this equation is to determine the defined range.

, x ≠ 1
Remember that when the denominators of both fractions are the same,, you need to set the numerators equal. This will look like the following:

= 5
Take the root of both sides of the equation and remember to use both positive and negative roots.
x +/-
![\sqrt[4]{5}](https://tex.z-dn.net/?f=%20%5Csqrt%5B4%5D%7B5%7D)
Separate the solutions.
x =
![\sqrt[4]{5}](https://tex.z-dn.net/?f=%20%5Csqrt%5B4%5D%7B5%7D)
, x ≠ 1
x = -
Check if the solution is in the defined range.
x =
x = -
This means that the final solution to your question are the following:
x =
x = -
Let me know if you have any further questions.
:)
The midsegment theorem says that the midsegment is half the third side and parallel as well. 20*2 is 40 so x = 35
Answer:
For 3x^2+4x+4=0
Discriminant= = -32
The solutions are
(-b+√x)/2a= (-2+2√-2)/3
(-b-√x)/2a= (-2-2√-2)/3
For 3x^2+2x+4=0
Discriminant= -44
The solutions
(-b+√x)/2a= (-1+√-11)/3
(-b-√x)/2a= (-1-√-11)/3
For 9x^2-6x+2=0
Discriminant= -36
The solutions
(-b+√x)/2a= (1+√-1)/3
(-b-√x)/2a= (1-√-1)/3
Step-by-step explanation:
Formula for the discriminant = b²-4ac
let the discriminant be = x for the equations
The solution of the equations
= (-b+√x)/2a and = (-b-√x)/2a
For 3x^2+4x+4=0
Discriminant= 4²-4(3)(4)
Discriminant= 16-48
Discriminant= = -32
The solutions
(-b+√x)/2a =( -4+√-32)/6
(-b+√x)/2a= (-4 +4√-2)/6
(-b+√x)/2a= (-2+2√-2)/3
(-b-√x)/2a =( -4-√-32)/6
(-b-√x)/2a= (-4 -4√-2)/6
(-b-√x)/2a= (-2-2√-2)/3
For 3x^2+2x+4=0
Discriminant= 2²-4(3)(4)
Discriminant= 4-48
Discriminant= -44
The solutions
(-b+√x)/2a =( -2+√-44)/6
(-b+√x)/2a= (-2 +2√-11)/6
(-b+√x)/2a= (-1+√-11)/3
(-b-√x)/2a =( -2-√-44)/6
(-b-√x)/2a= (-2 -2√-11)/6
(-b-√x)/2a= (-1-√-11)/3
For 9x^2-6x+2=0
Discriminant= (-6)²-4(9)(2)
Discriminant= 36 -72
Discriminant= -36
The solutions
(-b+√x)/2a =( 6+√-36)/18
(-b+√x)/2a= (6 +6√-1)/18
(-b+√x)/2a= (1+√-1)/3
(-b-√x)/2a =( 6-√-36)/18
(-b-√x)/2a= (6 -6√-1)/18
(-b-√x)/2a= (1-√-1)/3