Answer:
Step-by-step explanation:
This is a differential equation problem most easily solved with an exponential decay equation of the form
. We know that the initial amount of salt in the tank is 28 pounds, so
C = 28. Now we just need to find k.
The concentration of salt changes as the pure water flows in and the salt water flows out. So the change in concentration, where y is the concentration of salt in the tank, is
. Thus, the change in the concentration of salt is found in
inflow of salt - outflow of salt
Pure water, what is flowing into the tank, has no salt in it at all; and since we don't know how much salt is leaving (our unknown, basically), the outflow at 3 gal/min is 3 times the amount of salt leaving out of the 400 gallons of salt water at time t:

Therefore,
or just
and in terms of time,

Thus, our equation is
and filling in 16 for the number of minutes in t:
y = 24.834 pounds of salt
Circumference = 2pi * r
So
3pi = 2pi r divide away pi
3 = 2 r
(3/2) = r = 1.5 m
Area = pi ( r^2) = pi (1.5)^2 = 2.25 pi m^2 ≈ 7.07 m^2
cited from web2.0calc
The y intercept is when x=0 so y=1/2(0) -3 so y=0-3 so y=-3
Answer:
Part A: Up 9
Part B: Up 6
Step-by-step explanation:
Part A: The graph appears to be a cosine graph since it starts at a peak on the y-axis. Normally a cosine graph starts at (0,1). This graph begins at (0,10). It has been shifted up y a translation by 9.
Part B: Each trig equation has a basic structure f(x) = a sin (x+b) + k where:
- a is the vertical stretch
- b is the horizontal shift
- k is the vertical shift
A vertical translation is a vertical shift and is represented by the value in k added outside of the function. In the equation f(x) = 2sin(θ + 120°) + 6, k = 6. The vertical translation is 6.