1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dybincka [34]
3 years ago
12

Answer this and give an explanation.

Mathematics
2 answers:
Margarita [4]3 years ago
4 0

Answer:

3/9

Step-by-step explanation:

1/3*3

denis-greek [22]3 years ago
3 0

Answer:

3/9

Step-by-step explanation:

1/3 x 3 is 3/9 and 3/9 and the denomianter is 3 times greater than the numerator

You might be interested in
Find the value of x.<br><br> :]]
Mekhanik [1.2K]

Answer:

144

Step-by-step explanation:

6 0
2 years ago
Read 2 more answers
Bonjour à tous, pouvez vous m'aider à trouver la réponse pour cette "question ouverte" svp?
AlekseyPX

La solution:

625 cm^2.

Explication étape par étape:

Si la forme est rectangulaire, elle aura la plus grande superficie possible quand la longueur équivaut à la largeur. Pour avoir un périmètre de 100 cm, cela signifie que chaque côté doit faire 25 cm.

La superficie serait alors de 25 cm x 25 cm = 625 cm^2.

8 0
2 years ago
Prove the following by induction. In each case, n is apositive integer.<br> 2^n ≤ 2^n+1 - 2^n-1 -1.
frutty [35]
<h2>Answer with explanation:</h2>

We are asked to prove by the method of mathematical induction that:

2^n\leq 2^{n+1}-2^{n-1}-1

where n is a positive integer.

  • Let us take n=1

then we have:

2^1\leq 2^{1+1}-2^{1-1}-1\\\\i.e.\\\\2\leq 2^2-2^{0}-1\\\\i.e.\\2\leq 4-1-1\\\\i.e.\\\\2\leq 4-2\\\\i.e.\\\\2\leq 2

Hence, the result is true for n=1.

  • Let us assume that the result is true for n=k

i.e.

2^k\leq 2^{k+1}-2^{k-1}-1

  • Now, we have to prove the result for n=k+1

i.e.

<u>To prove:</u>  2^{k+1}\leq 2^{(k+1)+1}-2^{(k+1)-1}-1

Let us take n=k+1

Hence, we have:

2^{k+1}=2^k\cdot 2\\\\i.e.\\\\2^{k+1}\leq 2\cdot (2^{k+1}-2^{k-1}-1)

( Since, the result was true for n=k )

Hence, we have:

2^{k+1}\leq 2^{k+1}\cdot 2-2^{k-1}\cdot 2-2\cdot 1\\\\i.e.\\\\2^{k+1}\leq 2^{(k+1)+1}-2^{k-1+1}-2\\\\i.e.\\\\2^{k+1}\leq 2^{(k+1)+1}-2^{(k+1)-1}-2

Also, we know that:

-2

(

Since, for n=k+1 being a positive integer we have:

2^{(k+1)+1}-2^{(k+1)-1}>0  )

Hence, we have finally,

2^{k+1}\leq 2^{(k+1)+1}-2^{(k+1)-1}-1

Hence, the result holds true for n=k+1

Hence, we may infer that the result is true for all n belonging to positive integer.

i.e.

2^n\leq 2^{n+1}-2^{n-1}-1  where n is a positive integer.

6 0
3 years ago
I need three dollars seventy-eight cents more to buy a pair of tennis shoes. The tennis shoes cost eight dollars less the one hu
aleksandrvk [35]

Answer:

$118.22

Step-by-step explanation:

Subtract $130.00-$8.00= $122.00

Then subtract $122.00- $3.78 = $118.22

7 0
3 years ago
Read 2 more answers
HELPPP PLEASE ASAP !!!!!!!!!!
Vikki [24]

Answer:

the triangle flipped over the y axis

6 0
3 years ago
Read 2 more answers
Other questions:
  • Anyone understand this???
    5·2 answers
  • a rope is 24 feet long. it is cut into two pieces such that one piece is half the length of the other. find the lengths of the t
    15·2 answers
  • A scientist has discovered an organism that produces five offspring exactly one hour after its own birth, and then goes on to li
    10·2 answers
  • Given: MzQVR = 49°
    12·1 answer
  • 54÷6,297 plz help fast I will give the brainliest answer​
    14·1 answer
  • Solve for x.<br><br><br> A.90<br> B.100<br> C.135<br><br><br><br><br> HELP ME
    12·1 answer
  • [2m-n+p]^2-[2m+n-p]^2
    10·1 answer
  • Re-write the quadratic function below in Standard Form<br> y = 3(x - 5)(x - 2)
    5·1 answer
  • Please please please help​
    13·1 answer
  • What are the coordinates of the y-intercept PLS HELP ME
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!