V=hpir^2
A.
divide both sides by pir^2

B.
use

given
V=32π
r=2


8=h
height is 8 inches
Add all of the percents up and then divide by 3. You get 89.6%
It’s good to have holes in your shirt because you have to put your arms and heads through it ;)
Answer:
the dimensions of the most economical shed are height = 10 ft and side 5 ft
Step-by-step explanation:
Given data
volume = 250 cubic feet
base costs = $4 per square foot
material for the roof costs = $6 per square foot
material for the sides costs = $2.50 per square foot
to find out
the dimensions of the most economical shed
solution
let us consider length of side x and height is h
so we can say x²h = 250
and h = 250 / x²
now cost of material = cost of base + cost top + cost 4 side
cost = x²(4) + x²(6) + 4xh (2.5)
cost = 10 x² + 10xh
put here h = 250 / x²
cost = 10 x² + 10x (250/ x² )
cost = 10 x² + (2500/ x )
differentiate and we get
c' = 20 x - 2500 / x²
put c' = 0 solve x
20 x - 2500 / x² = 0
x = 5
so we say one side is 5 ft base
and height is h = 250 / x²
h = 250 / 5²
height = 10 ft
Area of rectangle= Width x Length
600= 20x Length
Length= 600÷20= 30
Ans: The floor is 30 feet long.
.