The unit normal for the given plane is <5,2,-1>.
The equation of the plane parallel to the given plane passing through (5,5,4) is therefore
5(x-5)+2(y-5)-1(z-4)=0
simplify =>
5x+2y-z=25+10-4=31
Answer: the plane through (5,5,4) parallel to 5x+2y-z=-6 is 5x+2y-z=31
Answer:
None of these answers are correct.
Step-by-step explanation:
If a²+b²=c², then 7²+5²=c², then if you solve for c this equals about 8. This is none of the answers mentioned which is 8. Also, a good thing to remember is that the hypotenuse is always larger than the two side lengths. So, since the answer is 8 then it is none of the answers.
<span>-6x^4y^5 - 15x^3y^2 + 9x^2y^3
</span>-6x^4y^5 = -2, 3, x, x, x, x, y, y, y, y, y
15x^3y^2 = -5, 3 x, x, x, y, y
9x^2y^3 = 3, 3 x, x, y, y, y
Each group has a 3 in common and each group has 2 x in common and each group has 2 y in common so the GCF = -3x^2y^2
Divide that out and we get


Answer:
C. x = -1 ; x ~8.1
Step-by-step explanation:
First we graph 
Here we have x+2 under the square root. x+2>=0, x>=-2
So we take some x values greater than -2 and find out f(x) to make a table for graphing
x f(x)
-2 
-1 -4
2 -5
Graph it and extent the graph
Now we graph 
Given equation is in the form of g(x) = a|x-h| + k
where (h,k) is the vertex
here h= 3 and k = 4, so vertex is (3,4)
Now make a table, pick some numbers for x less than and greater than vertex
x y
-1 
0 
3 4
6 -2
Both graphs are attached below
The graph of f(x) and g(x) interests at x= -1 and x=8.1