So firstly, we have to find the radius of the circular garden before finding the circumference (the amount of fencing needed to surround the garden). To find the radius, use the area formula (
), plug in the area of the garden (36 ft^2) and solve for r as such:

So that we know the radius, plug that into the circumference equation (
) to solve:

Your answer is A. 12√π.
Answer:
The horizontal distance from the plane to the person on the runway is 20408.16 ft.
Step-by-step explanation:
Consider the figure below,
Where AB represent altitude of the plane is 4000 ft above the ground , C represents the runner. The angle of elevation from the runway to the plane is 11.1°
BC is the horizontal distance from the plane to the person on the runway.
We have to find distance BC,
Using trigonometric ratio,

Here,
,Perpendicular AB = 4000


Solving for BC, we get,

(approx)
(approx)
Thus, the horizontal distance from the plane to the person on the runway is 20408.16 ft
Answer:
7
Step-by-step explanation:
<h3><u>Answer:</u></h3>
<h3>
<u>Solution:</u></h3>
We are given that the arithmetic progression is defined by :
➝ 2n + 1
<em>Therefore, </em>
- <u>For </u><u>first </u><u>term</u>
➙ n = 1
➝ 2 × 1 + 1
➝ 2 + 1
➝ 3
- <u>For </u><u>second </u><u>term</u>
➙ n = 2
➝ 2 × 2 + 1
➝ 4 + 1
➝ 5
- <u>Common </u><u>difference</u>
➙ 2nd term - 1st term
➝ 5 - 3
➝ 2
<h3><u>More </u><u>information</u><u>:</u></h3>
- The difference between the successive term and the preceding term is the difference of an arithmetic progression. It is always same for the same arithmetic progression.