The domain is the value of x. In this case, -3≤x≤7
the range is the value of y. in this case, -1≤y≤9
this is not a function, because the same x value has two corresponding y values. For example, when x=5, y=0 or y=8
It IS a function if every x value has only one corresponding y value.
Answer:
4
Step-by-step explanation:
I will attach google sheet that I used to find regression equation.
We can see that linear fit does work, but the polynomial fit is much better.
We can see that R squared for polynomial fit is higher than R squared for the linear fit. This tells us that polynomials fit approximates our dataset better.
This is the polynomial fit equation:

I used h to denote hours. Our prediction of temperature for the sixth hour would be:

Here is a link to the spreadsheet (
<span>https://docs.google.com/spreadsheets/d/17awPz5U8Kr-ZnAAtastV-bnvoKG5zZyL3rRFC9JqVjM/edit?usp=sharing)</span>
Answer:
y=4/3x-1/3
Step-by-step explanation:
m=y2-y1/x2-x1
fill in the two points for the y's and the x's
then proceed to y = mx+b
Where:
m is the slope, and
b is the y-intercept
then you solve and <u>bam</u>!
<u>Annotation</u>General formula for distance-time-velocity relationship is as following
d = v × t
The velocity of the first car will be v₁, the time is 2 hours, the distance will be d₁.
The velocity of the second car will be v₂, the time is 2 hours, the distance will be d₂.
One of them traveling 5 miles per hour faster than the others. That means the velocity of the first car is 5 miles per hour more than the velocity of the second car.
v₁ = v₂ + 5 (first equation)
The distance of the two cars after two hours will be 262 miles apart. Because they go to opposite direction, we could write it as below.
d₁ + d₂ = 262 (second equation)
Plug the d-v-t relationship to the second equationd₁ + d₂ = 262
v₁ × t + v₂ × t = 262
v₁ × 2 + v₂ × 2 = 262
2v₁ + 2v₂ = 262
Plug the v₁ as (v₂+5) from the first equation2v₁ + 2v₂ = 262
2(v₂ + 5) + 2v₂ = 262
2v₂ + 10 + 2v₂ = 262
4v₂ + 10 = 262
4v₂ = 252
v₂ = 252/4
v₂ = 63
The second car is 63 mph fast.Find the velocity of the first car, use the first equationv₁ = v₂ + 5
v₁ = 63 + 5
v₁ = 68
The first car is 68 mph fast.
Answer

