1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
blondinia [14]
3 years ago
7

Differentiate between a fixed and movable pulley.​

Mathematics
1 answer:
Tamiku [17]3 years ago
8 0

Answer:

Step-by-step explanation:

A fixed pulley consists of a wheel fixed to a shaft and is used in conjunction with a belt to transfer energy to another fixed pulley. A movable pulley consists of a shell, a movable wheel and a rope. Movable pulleys are also know as block and tackle.

You might be interested in
Un padre tiene actualmente cuatro veces la edad de su hijo. Cuando pasen 5 años, su edad será solo tres veces superior. ¿Qué eda
julsineya [31]

Answer:

I. Hijo, h = 10 años

II. Padre, P = 40 años

Step-by-step explanation:

  • Sea la edad del padre P.
  • Sea la edad del hijo h.

Traduciendo el problema verbal a una expresión algebraica, tenemos;

P = 4h .....ecuación 1.

P + 5 = 3(h + 5) ........ecuación 2.

Simplificando aún más, tenemos;

P + 5 = 3h + 15

P = 3h + 15 - 5

F = 3h + 10 ......ecuación 3.

Sustituyendo la ecuación 1 en la ecuación 3;

4h = 3h + 10

4h - 3h = 10

<em>h = 10 años </em>

A continuación, encontraríamos la edad del padre;

P = 4h

P = 4 * 10

<em>P = 40 años</em>

4 0
3 years ago
Help?? Me pleaseeee, you must help
storchak [24]
C is your answer e cause u supposed to multiple
7 0
4 years ago
Read 2 more answers
If anyone knows about definite integrals for calculus then please I request help! I
kicyunya [14]

Answer:

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 4x^{-2}
  2. [<em>u</em>] Differentiate [Basic Power Rule, Derivative Properties]:                       \displaystyle du = \frac{-8}{x^3} \ dx
  3. [Bounds] Switch:                                                                                           \displaystyle \left \{ {{x = 9 ,\ u = 4(9)^{-2} = \frac{4}{81}} \atop {x = 5 ,\ u = 4(5)^{-2} = \frac{4}{25}}} \right.

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^9_5 {\frac{-8}{x^3}e^\big{4x^{-2}}} \, dx
  2. [Integral] U-Substitution:                                                                              \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^{\frac{4}{81}}_{\frac{4}{25}} {e^\big{u}} \, du
  3. [Integral] Exponential Integration:                                                               \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}(e^\big{u}) \bigg| \limits^{\frac{4}{81}}_{\frac{4}{25}}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8} \bigg( e^\Big{\frac{4}{81}} - e^\Big{\frac{4}{25}} \bigg)
  5. Simplify:                                                                                                         \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

4 0
3 years ago
There are 25 scented candles left in stock on eBay. On amazon there are 12 + (9x3) scented candles left. How many scented candle
oksano4ka [1.4K]
(9x3)= 27 +12= 39. 39 is the answer
4 0
3 years ago
What is the distance between two points (1,6) and (8,4)
iogann1982 [59]
6,5 is two points to this equation
3 0
3 years ago
Read 2 more answers
Other questions:
  • 111 is what percent of 300
    13·2 answers
  • if Lylah completes the square for f(x)=x squared -12x+7 in order to find the minimum she must write f(x) in the general form f(x
    14·1 answer
  • Among the eighth-graders in Michael's school, 70% have siblings. The eighth-grade class in 5/6 the size of the seventh-grade cla
    13·2 answers
  • John painted his most famous work,in his country,in 1930 on composition board with perimeter 103.48 in. If the rectangular paint
    11·1 answer
  • 19. Simplify 3√ 2 – √ 2 . <br><br> A. 4√ 2 <br> B. 2√ 2 <br> C. √ 2 <br> D. 3√ 2
    14·2 answers
  • What is the approximate volume of a cone with a height of 9 fr and radius of 3 ft?
    15·1 answer
  • How do u know that the sum of -2(3/4) and 5/9 is rational?
    11·1 answer
  • a vegetable garden surrounding path are shaped like a square that together are 10 ft wide. The path is 3 ft wide. Find the total
    15·1 answer
  • If a bar chart showed that 4 students received an a on the test, 3 students received a b, and 1 student received a c, the talles
    6·1 answer
  • Pleaseeee help me like I figured one out I just don’t know what the other one is
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!