Answer:
I. Hijo, h = 10 años
II. Padre, P = 40 años
Step-by-step explanation:
- Sea la edad del padre P.
- Sea la edad del hijo h.
Traduciendo el problema verbal a una expresión algebraica, tenemos;
P = 4h .....ecuación 1.
P + 5 = 3(h + 5) ........ecuación 2.
Simplificando aún más, tenemos;
P + 5 = 3h + 15
P = 3h + 15 - 5
F = 3h + 10 ......ecuación 3.
Sustituyendo la ecuación 1 en la ecuación 3;
4h = 3h + 10
4h - 3h = 10
<em>h = 10 años </em>
A continuación, encontraríamos la edad del padre;
P = 4h
P = 4 * 10
<em>P = 40 años</em>
C is your answer e cause u supposed to multiple
Answer:

General Formulas and Concepts:
<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]: ![\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Bcf%28x%29%5D%20%3D%20c%20%5Ccdot%20f%27%28x%29)
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
Integration Rule [Fundamental Theorem of Calculus 1]: 
Integration Property [Multiplied Constant]: 
U-Substitution
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>

<u>Step 2: Integrate Pt. 1</u>
<em>Identify variables for u-substitution.</em>
- Set <em>u</em>:

- [<em>u</em>] Differentiate [Basic Power Rule, Derivative Properties]:

- [Bounds] Switch:

<u>Step 3: Integrate Pt. 2</u>
- [Integral] Rewrite [Integration Property - Multiplied Constant]:

- [Integral] U-Substitution:

- [Integral] Exponential Integration:

- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:

- Simplify:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
6,5 is two points to this equation