1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Strike441 [17]
3 years ago
7

If anyone knows about definite integrals for calculus then please I request help! I

Mathematics
1 answer:
kicyunya [14]3 years ago
4 0

Answer:

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 4x^{-2}
  2. [<em>u</em>] Differentiate [Basic Power Rule, Derivative Properties]:                       \displaystyle du = \frac{-8}{x^3} \ dx
  3. [Bounds] Switch:                                                                                           \displaystyle \left \{ {{x = 9 ,\ u = 4(9)^{-2} = \frac{4}{81}} \atop {x = 5 ,\ u = 4(5)^{-2} = \frac{4}{25}}} \right.

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^9_5 {\frac{-8}{x^3}e^\big{4x^{-2}}} \, dx
  2. [Integral] U-Substitution:                                                                              \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^{\frac{4}{81}}_{\frac{4}{25}} {e^\big{u}} \, du
  3. [Integral] Exponential Integration:                                                               \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}(e^\big{u}) \bigg| \limits^{\frac{4}{81}}_{\frac{4}{25}}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8} \bigg( e^\Big{\frac{4}{81}} - e^\Big{\frac{4}{25}} \bigg)
  5. Simplify:                                                                                                         \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

You might be interested in
Boris bought 28 pounds of sugar for $11.
Drupady [299]

Answer:

about $2.54 per pound of sugar

5 0
3 years ago
Which of the following is the radical expression of a to the four ninths power ?
LuckyWell [14K]

Given expression in exponential form : a^{\frac{4}{9} }.

We need to convert it into radical form.

<em>Please note: When we convert an exponential to radical form, the top number goes in the exponent of the term and bottom number of the fraction goes in the radical sign to make it nth radical.</em>

We can apply following rule:

(a)^{\frac{m}{n}}= \sqrt[n]{x^m}.

Therefore,

a^{\frac{4}{9} }= \sqrt[9]{a^4}.

Therefore, correct option is : D. ninth root of a to the fourth power.

6 0
3 years ago
Graph the line -1 passing through the point (-4,5)​
Dennis_Churaev [7]

Answer:

Step-by-step explanation:

If you want to find the equation of line with a given a slope of which goes through the point (-4,5), you can simply use the point-slope formula to find the equation:

---Point-Slope Formula---

where is the slope, and is the given point

So lets use the Point-Slope Formula to find the equation of the line

Plug in , , and (these values are given)

Distribute  

Multiply and to get

Add -1 to both sides to isolate y

Combine like terms and to get the answer

So the equation of the line with a slope of which goes through the point (-4,5) is:

which is now in y=mx = b form where the slope is m=-4/5  and the y-intercept is b=1

6 0
3 years ago
Which is the better buy on potatoes?<br> 3 lbs. for $.90<br> 5 lbs. for $1.60
myrzilka [38]

Answer:

3 pounds for 90 cents.

Step-by-step explanation:

The 5 pound bag costs 32 cents a pound

The 3 pound bag is 30 cents a pound

7 0
3 years ago
Help me answer pls :)<br><br><br> what is the value of y when x=43
Leona [35]

Answer:

87

Step-by-step explanation:

f(x) = 2x+1

6 0
3 years ago
Other questions:
  • Draw a graph for the situation.
    7·1 answer
  • Form a polynomial whose real zeros and degree. zeros: -3,0,2: Degree 3
    7·1 answer
  • Is 17/100 greater or lesser than 8.7
    9·1 answer
  • In the diagram below, and are tangent to O. What is the measure of E?
    15·1 answer
  • A machine can make a box in 1 3/10 seconds. How many boxes can the machine make in 1 hour
    8·2 answers
  • Analyze the diagram below and complete the instructions that follow.
    9·1 answer
  • The circumference of a circle is 53.38 centimeters. What is the area in square centimeters. Use 3.14 for ×
    12·1 answer
  • For a charity event, Jean biked at a fixed speed from Pine Bluff to Newberry. The graph shows the distance she rode along the y-
    6·1 answer
  • Solve the following system of equations using the substitution method.
    10·1 answer
  • Using the following equation, find the center and radius:
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!