1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Strike441 [17]
2 years ago
7

If anyone knows about definite integrals for calculus then please I request help! I

Mathematics
1 answer:
kicyunya [14]2 years ago
4 0

Answer:

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 4x^{-2}
  2. [<em>u</em>] Differentiate [Basic Power Rule, Derivative Properties]:                       \displaystyle du = \frac{-8}{x^3} \ dx
  3. [Bounds] Switch:                                                                                           \displaystyle \left \{ {{x = 9 ,\ u = 4(9)^{-2} = \frac{4}{81}} \atop {x = 5 ,\ u = 4(5)^{-2} = \frac{4}{25}}} \right.

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^9_5 {\frac{-8}{x^3}e^\big{4x^{-2}}} \, dx
  2. [Integral] U-Substitution:                                                                              \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^{\frac{4}{81}}_{\frac{4}{25}} {e^\big{u}} \, du
  3. [Integral] Exponential Integration:                                                               \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}(e^\big{u}) \bigg| \limits^{\frac{4}{81}}_{\frac{4}{25}}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8} \bigg( e^\Big{\frac{4}{81}} - e^\Big{\frac{4}{25}} \bigg)
  5. Simplify:                                                                                                         \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

You might be interested in
Division 542 dividido 2 y resta
vodomira [7]

Answer: 271

Step-by-step explanation:

\frac{542}{2}=\frac{500+40+2}{2}=250+20+1+=271

5 0
1 year ago
Three tenths times twelve
Sholpan [36]

Answer:

3.6

Step-by-step explanation:

0.3x12=3.6

Because you know that 12x3=36, so 12x0.3=3.6!

Good luck!

7 0
3 years ago
Answer this question please shown in the image below.
Oksana_A [137]
Rectangle , think about what cutting the cylinder in half would make the inside image look like !!
8 0
3 years ago
If T is the midpoint of SU find the values of x, ST and SU.
Nitella [24]

Answer:  The required values are

x = 12 units, ST = 60 units and SU = 120 units.

Step-by-step explanation:  Given that T is the midpoint of SU, where

ST = 5x  and  TU = 3x + 24.

We are to find the values of x, ST and SU.

Since T is the midpoint of SU, so we get

ST=TU\\\\\Rightarrow 5x=3x+24\\\\\Rightarrow 5x-3x=24\\\\\Rightarrow 2x=24\\\\\Rightarrow x=\dfrac{24}{2}\\\\\Rightarrow x=12.

So, the value of x is 12.

Therefore,

ST=5\times12=60

and

SU=5x+3x+24=8x+24=8\times12+24=96+24=120.

Thus, the required values are

x = 12 units, ST = 60 units and SU = 120 units.

8 0
3 years ago
Read 2 more answers
Ill mark brainilist or whatever, just answer please fast. Need this done asap
Archy [21]

Answer:

true

Step-by-step explanation:

6 0
2 years ago
Read 2 more answers
Other questions:
  • I have to write a sentence as a equation so what is the answer for Eight less than one third is -13
    14·1 answer
  • A car travels at a constant speed. What is the car's speed between checkpoints, expressed as a unit rate? Checkpoint A 1:00 PM T
    6·1 answer
  • Andy, taylor and ben share in the teams payments in the ratio 1:3:4 what percentage does andy get
    12·1 answer
  • What is -1/2 x 3/4? Please Help
    15·2 answers
  • Write the equation of the line that passes through (3, -2) and has a slope of 4 in point slope form
    12·2 answers
  • Can someone please answer this question please answer it correctly and lease show work please help me I need it
    15·2 answers
  • PLEASE EXPLAIN HOW TO DO THIS PROBLEM
    11·2 answers
  • What the rate and unit rate to 9:2 if you divide 18 and 4 by 2
    13·1 answer
  • The graph represents the cost c
    14·1 answer
  • Double t, add v to the result, then multiply u<br><br>translate the phrase please!!
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!