1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Strike441 [17]
3 years ago
7

If anyone knows about definite integrals for calculus then please I request help! I

Mathematics
1 answer:
kicyunya [14]3 years ago
4 0

Answer:

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 4x^{-2}
  2. [<em>u</em>] Differentiate [Basic Power Rule, Derivative Properties]:                       \displaystyle du = \frac{-8}{x^3} \ dx
  3. [Bounds] Switch:                                                                                           \displaystyle \left \{ {{x = 9 ,\ u = 4(9)^{-2} = \frac{4}{81}} \atop {x = 5 ,\ u = 4(5)^{-2} = \frac{4}{25}}} \right.

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^9_5 {\frac{-8}{x^3}e^\big{4x^{-2}}} \, dx
  2. [Integral] U-Substitution:                                                                              \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^{\frac{4}{81}}_{\frac{4}{25}} {e^\big{u}} \, du
  3. [Integral] Exponential Integration:                                                               \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}(e^\big{u}) \bigg| \limits^{\frac{4}{81}}_{\frac{4}{25}}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8} \bigg( e^\Big{\frac{4}{81}} - e^\Big{\frac{4}{25}} \bigg)
  5. Simplify:                                                                                                         \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

You might be interested in
In what direction is the line containing the points (-4, -6) and (2,8) going?
butalik [34]

Answer:

d hopefully this helps you

3 0
3 years ago
Find the binomial coefficient<br> (46/46)<br> A.46<br> B.0<br> C.undefined <br> D.1
Scrat [10]

Answer:

Step-by-step explanation:

c

4 0
3 years ago
If the cube has a volume of approximately 561.5 cm, what is the approximate area of the cross-section shown?
never [62]

Answer:

The area of the cross section of the cube is 68 cm

Step-by-step explanation:

Volume of the cube is a^{3}

a^{3} = 561·5 cm ( Given )

a = edge or side of the cube

so, cube root on both the side will be

a = 8·25 cm

Cross section area of the cube is it depends where you cut the cube if cut the cube parallel and perpendicular to the faces then the cross sectional area will be a square whose length is the same as the length of the cube

Cross section area of the cube = a^{2}

                                                    = (8.25)^{2} cm

                                                    = 68 cm

Therefore , the area of the cross section of the cube is 68 cm

5 0
4 years ago
Please answer immediately
Jlenok [28]
It’s C




Bc 5/2 is equal to 2 1/2 which is greater




4 0
4 years ago
Read 2 more answers
20 point question pls help
lubasha [3.4K]

Answer: y = -1/3x - 1

Step-by-step explanation:

Slope-intercept = y = Mx + b

M = slope

B= y

3 0
3 years ago
Other questions:
  • A triangular pyramid has a base with an area of 11.3 square meters and has lateral
    14·1 answer
  • Show that the equation represent a sphere, and find its center and radius. X2+y2+z2-6x+4y-2z=11
    6·1 answer
  • On a map, 1/2 inch represents 4/5 mile. What distance on the map represents 1 mile? ​
    10·1 answer
  • Camille put three and four-hundredths gallons of gasoline in her car. What decimal number represents the number of gallons she b
    15·1 answer
  • Could someone help me with and tell you got this
    14·2 answers
  • it’s take 4 minutes to fill an empty aquarium to a depth of 2/5 meters. what is the unit rate in minutes per meter?
    13·1 answer
  • What is the distance between (8,-3) and (4,- 7)?
    5·1 answer
  • I WILL MAYBE GIVE BRAINLIEST IF CORRECT PLS ANSWER
    11·2 answers
  • How many solutions does the system of equations have?
    11·2 answers
  • Mr Gardener wants to have an annual intrest off 1000. if the annual intrest rate is 5% how much money should he invest
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!