1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Strike441 [17]
2 years ago
7

If anyone knows about definite integrals for calculus then please I request help! I

Mathematics
1 answer:
kicyunya [14]2 years ago
4 0

Answer:

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 4x^{-2}
  2. [<em>u</em>] Differentiate [Basic Power Rule, Derivative Properties]:                       \displaystyle du = \frac{-8}{x^3} \ dx
  3. [Bounds] Switch:                                                                                           \displaystyle \left \{ {{x = 9 ,\ u = 4(9)^{-2} = \frac{4}{81}} \atop {x = 5 ,\ u = 4(5)^{-2} = \frac{4}{25}}} \right.

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^9_5 {\frac{-8}{x^3}e^\big{4x^{-2}}} \, dx
  2. [Integral] U-Substitution:                                                                              \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^{\frac{4}{81}}_{\frac{4}{25}} {e^\big{u}} \, du
  3. [Integral] Exponential Integration:                                                               \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}(e^\big{u}) \bigg| \limits^{\frac{4}{81}}_{\frac{4}{25}}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8} \bigg( e^\Big{\frac{4}{81}} - e^\Big{\frac{4}{25}} \bigg)
  5. Simplify:                                                                                                         \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

You might be interested in
A family prepares an emergency kit for their home. The kit contains 63 gallons of drinking water. The​ family's daily drinking w
mr_godi [17]

Answer:

12 days

Step-by-step explanation:

Total gallons of the family's drinking water needs = gallons consumed by children + gallons consumed by adults

3\frac{1}{2} + 1\frac{3}{4} =

Converting to decimals

3.5 + 1.75 = 5.25 = 5\frac{1}{4}

If there are 63 gallons, the water supply would last for :

63 / 5.25 =12 days

6 0
3 years ago
Find the reference angel
Lady bird [3.3K]
50° heheheheehehehehe
3 0
3 years ago
I need help with range and domain ​
Katyanochek1 [597]

Answer:

69

Step-by-step explanation:

lol lol lol lol lol lol lol

4 0
3 years ago
a school bus traveled at an average speed of 35 miles per hour for 45 minutes . what distance did the school bus travel
rodikova [14]
45/60=0.75. Speed*time=distance. 35(0.75)= 26.25 miles
5 0
3 years ago
Read 2 more answers
Jenny has saved $600 from her summer job. During the school year, she withdraws $20 from her account every week for her daily ex
mel-nik [20]

Answer:

The answer is 14 weeks


6 0
3 years ago
Other questions:
  • Sum1 help plzzzzzzzzzz
    5·2 answers
  • Helppppppppppppp meeee
    7·2 answers
  • a tank has x gallons of water. ted adds 3 gallons of water into the tank. He pours the water equally into 4 smaller containers.
    5·2 answers
  • Lyn invested $7,000 into a investment paying 3% interest, compounded semi-annually, twice a year. After five years, how much wou
    15·1 answer
  • Simplify this expression.<br><br> 2x3(5x3 − 7)
    10·2 answers
  • How many 100 dollar bills make 2324 dollars
    5·1 answer
  • Use the relationships between the angles to find the value of x.
    7·2 answers
  • What is the fraction 24/4 simplified?
    12·1 answer
  • What is the area of the figure, use 3.14 for π
    9·2 answers
  • How many times greater is the value of 4 in 547 than the value of the 4 and 84​
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!