Answer:

Step-by-step explanation:
We have:

And we want to find B’(6).
So, we will need to find B(t) first. To do so, we will take the derivative of both sides with respect to x. Hence:
![\displaystyle B^\prime(t)=\frac{d}{dt}[24.6\sin(\frac{\pi t}{10})(8-t)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20B%5E%5Cprime%28t%29%3D%5Cfrac%7Bd%7D%7Bdt%7D%5B24.6%5Csin%28%5Cfrac%7B%5Cpi%20t%7D%7B10%7D%29%288-t%29%5D)
We can move the constant outside:
![\displaystyle B^\prime(t)=24.6\frac{d}{dt}[\sin(\frac{\pi t}{10})(8-t)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20B%5E%5Cprime%28t%29%3D24.6%5Cfrac%7Bd%7D%7Bdt%7D%5B%5Csin%28%5Cfrac%7B%5Cpi%20t%7D%7B10%7D%29%288-t%29%5D)
Now, we will utilize the product rule. The product rule is:

We will let:

Then:

(The derivative of u was determined using the chain rule.)
Then it follows that:
![\displaystyle \begin{aligned} B^\prime(t)&=24.6\frac{d}{dt}[\sin(\frac{\pi t}{10})(8-t)] \\ \\ &=24.6[(\frac{\pi}{10}\cos(\frac{\pi t}{10}))(8-t) - \sin(\frac{\pi t}{10})] \end{aligned}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cbegin%7Baligned%7D%20B%5E%5Cprime%28t%29%26%3D24.6%5Cfrac%7Bd%7D%7Bdt%7D%5B%5Csin%28%5Cfrac%7B%5Cpi%20t%7D%7B10%7D%29%288-t%29%5D%20%5C%5C%20%5C%5C%20%26%3D24.6%5B%28%5Cfrac%7B%5Cpi%7D%7B10%7D%5Ccos%28%5Cfrac%7B%5Cpi%20t%7D%7B10%7D%29%29%288-t%29%20-%20%5Csin%28%5Cfrac%7B%5Cpi%20t%7D%7B10%7D%29%5D%20%5Cend%7Baligned%7D)
Therefore:
![\displaystyle B^\prime(6) =24.6[(\frac{\pi}{10}\cos(\frac{\pi (6)}{10}))(8-(6))- \sin(\frac{\pi (6)}{10})]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20B%5E%5Cprime%286%29%20%3D24.6%5B%28%5Cfrac%7B%5Cpi%7D%7B10%7D%5Ccos%28%5Cfrac%7B%5Cpi%20%286%29%7D%7B10%7D%29%29%288-%286%29%29-%20%5Csin%28%5Cfrac%7B%5Cpi%20%286%29%7D%7B10%7D%29%5D)
By simplification:
![\displaystyle B^\prime(6)=24.6 [\frac{\pi}{10}\cos(\frac{3\pi}{5})(2)-\sin(\frac{3\pi}{5})] \approx -28.17](https://tex.z-dn.net/?f=%5Cdisplaystyle%20B%5E%5Cprime%286%29%3D24.6%20%5B%5Cfrac%7B%5Cpi%7D%7B10%7D%5Ccos%28%5Cfrac%7B3%5Cpi%7D%7B5%7D%29%282%29-%5Csin%28%5Cfrac%7B3%5Cpi%7D%7B5%7D%29%5D%20%5Capprox%20-28.17)
So, the slope of the tangent line to the point (6, B(6)) is -28.17.
We can round 5.65 up to 6 and 3.4 down to 3.
3 * 6 = 18
now let's see how close our estimate is to the real answer
5.65 * 3.4 = 19.21
Our answer was pretty close to the real answer!
Hope I helped!
~ Zoe
Answer:
42 strawberries are in each basket. 4 strawberries are left over.
Step-by-step explanation:
To find out how many she put into each basket, you need to divide 256/6. Your answer should 42.6666667. Round down to 42.
To find out how many are left over, multiply 42 x 6. You need to do this to figure out how many strawberries total she used trying to put them evenly into the baskets. Your answer should be 252. Then, you subtract 256 - 252. You do this to find out how many are left over. Your answer is 4.
<h3>
Answer:</h3>
The radius would be <em>3.5 units</em>.
Step-by-step explanation:
This is because a radius is always half of a diameter.
By using that,
7 ÷ 2 = 3.5 units
Since there was no measurement listed in the question, the answer would be in "units."