Answer:
x=2
Step-by-step explanation:
Solution is attached
You can plug 2 back into the equation to verify :)
Answer: option D is the correct answer.
Step-by-step explanation:
The given sequence is a geometric sequence because the consecutive terms differ by a common ratio.
The formula for determining the nth term of a geometric progression is expressed as
an = a1r^(n - 1)
Where
a1 represents the first term of the sequence.
r represents the common ratio.
n represents the number of terms.
From the information given,
a1 = 36
r = 12/36 = 4/12 = 1/3
Therefore, the formula for the nth term of the sequence is
an = 36 × 1/3^(n - 1)
an = 36 × 3^-1(n - 1)
an = 36 × 3^(-n + 1)
an = 36 × 3^(1 - n)
Answer:
Option A) One tailed test is a hypothesis test in which rejection region is in one tail of the sampling distribution
Step-by-step explanation:
One Tailed Test:
- A one tailed test is a test that have hypothesis of the form

- A one-tailed test is a hypothesis test that help us to test whether the sample mean would be higher or lower than the population mean.
- Rejection region is the area for which the null hypothesis is rejected.
- If we perform right tailed hypothesis that is the upper tail hypothesis then the rejection region lies in the right tail after the critical value.
- If we perform left tailed hypothesis that is the lower tail hypothesis then the rejection region lies in the left tail after the critical value.
Thus, for one tailed test,
Option A) One tailed test is a hypothesis test in which rejection region is in one tail of the sampling distribution
So, first, you have to find the smallest number that is divisible by both 12 and 10. Which is 60. So, you need 5 boxes of trophies and 6 boxes of stands
Now to get how much it will cost you now multiply the respective costs by the amount of boxes so you get
5 x 10 = 50
6 x 6 = 36
Then you add both
50 + 36 = 86
He will spend a total of $86 on both trophies and stands.