Answer:

Step-by-step explanation:
To solve the question we refresh our knowledge of the quotient rule.
For a function f(x) express as a ratio of another functions u(x) and v(x) i.e
, the derivative is express as

from 
we assign u(x)=lnx and v(x)=x^2
and the derivatives
.
Note the expression used in determining the derivative of the logarithm function.it was obtain from the general expression of logarithm derivative i.e 
If we substitute values into the quotient expression we arrive at

Answer:
C. Line 3
Step-by-step explanation:
from the diagram, we can see that the height or line perpendicular to the parallel sides is 8.5.
likewise we can see that the parallel sides or "bases" are 24.3 and 9.7, so
![\textit{area of a trapezoid}\\\\ A=\cfrac{h(a+b)}{2}~~ \begin{cases} h=height\\ a,b=\stackrel{parallel~sides}{bases}\\[-0.5em] \hrulefill\\ h=8.5\\ a=24.3\\ b=9.7 \end{cases}\implies \begin{array}{llll} A=\cfrac{8.5(24.3+9.7)}{2}\\\\ A=\cfrac{8.5(34)}{2}\implies A=144.5~in^2 \end{array}](https://tex.z-dn.net/?f=%5Ctextit%7Barea%20of%20a%20trapezoid%7D%5C%5C%5C%5C%20A%3D%5Ccfrac%7Bh%28a%2Bb%29%7D%7B2%7D~~%20%5Cbegin%7Bcases%7D%20h%3Dheight%5C%5C%20a%2Cb%3D%5Cstackrel%7Bparallel~sides%7D%7Bbases%7D%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20h%3D8.5%5C%5C%20a%3D24.3%5C%5C%20b%3D9.7%20%5Cend%7Bcases%7D%5Cimplies%20%5Cbegin%7Barray%7D%7Bllll%7D%20A%3D%5Ccfrac%7B8.5%2824.3%2B9.7%29%7D%7B2%7D%5C%5C%5C%5C%20A%3D%5Ccfrac%7B8.5%2834%29%7D%7B2%7D%5Cimplies%20A%3D144.5~in%5E2%20%5Cend%7Barray%7D)
As with simple linear regression, we desire the residuals to:
- Have constant variance.
- Have a mean close to 0.
<h3>What is a simple linear regression?</h3>
It should be noted that a simple linear regression simply means a model that describes the relationship between a dependent variable and an independent variable.
In this case, as with simple linear regression, we desire the residuals to have constant variance and have a mean close to 0.
Learn more about regression on:
brainly.com/question/25987747