It'd be A.. You first would find which of them have a difference of 4. Which, is A, C, and D. Then, you'd multiply to see which of those three equal 96. 12*8=96
Okay well
a(t)= amount of substance remaining after t days
assuming exponential decay, a(t)=29e^-0.1359t
now, find the half, set a(t)= half the original and solve for t
14.5=29e^-0.1359t
0.5=e^-0.1359t
In(0.5)=In(e^-0.1359t)
In(0.5)=-o.1359t
t=in(0.5)/(-0.1359)= (aprox) 5.1 days
Answer:
Привет! Кто-нибудь читал Криспину крест ведущего? Если да, то может ли кто-нибудь дать мне представление о том, как он изменился в этой истории! Спасибо за ваше время!
Step-by-step explanation:
Answer:
5/2 x^2y^2
Step-by-step explanation:
( x^2 - 3/5y^2)^2 + (3/4 x^2 + 4/5 y^2)^2 - (5/4x^2 - y^2)^2
= x^4 - 6/5x^2y^2 + 9/25y^4 + 9/16x^4 + 6/5x^2y^2 + 16/25y^4 - ( 25/16x^4
- 5/2x^2y^2 + y^4)
Distributing the negative over the parentheses:-
= x^4 - 6/5x^2y^2 + 9/25y^4 + 9/16x^4 + 6/5x^2y^2 + 16/25y^4
- 25/16x^4
+ 5/2x^2y^2 - y^4
Bringing like terms together
x^4 + 9/16x^4 - 25/16x^4 - 6/5x^2y^2 + 6/5x^2y^2 + 5/2x^2y^2 + 16/25y^4 + 9/25y^4
- y^4
Adding like terms:-
= 5/2 x^2y^2 Answer