Answer:
a) P(x<5)=0.
b) E(X)=15.
c) P(8<x<13)=0.3.
d) P=0.216.
e) P=1.
Step-by-step explanation:
We have the function:

a) We calculate the probability that you need less than 5 minutes to get up:

Therefore, the probability is P(x<5)=0.
b) It takes us between 10 and 20 minutes to get up. The expected value is to get up in 15 minutes.
E(X)=15.
c) We calculate the probability that you will need between 8 and 13 minutes:
![P(8\leq x\leq 13)=P(10\leqx\leq 13)\\\\P(8\leq x\leq 13)=\int_{10}^{13} f(x)\, dx\\\\P(8\leq x\leq 13)=\int_{10}^{13} \frac{1}{10} \, dx\\\\P(8\leq x\leq 13)=\frac{1}{10} \cdot [x]_{10}^{13}\\\\P(8\leq x\leq 13)=\frac{1}{10} \cdot (13-10)\\\\P(8\leq x\leq 13)=\frac{3}{10}\\\\P(8\leq x\leq 13)=0.3](https://tex.z-dn.net/?f=P%288%5Cleq%20x%5Cleq%2013%29%3DP%2810%5Cleqx%5Cleq%2013%29%5C%5C%5C%5CP%288%5Cleq%20x%5Cleq%2013%29%3D%5Cint_%7B10%7D%5E%7B13%7D%20f%28x%29%5C%2C%20dx%5C%5C%5C%5CP%288%5Cleq%20x%5Cleq%2013%29%3D%5Cint_%7B10%7D%5E%7B13%7D%20%5Cfrac%7B1%7D%7B10%7D%20%5C%2C%20dx%5C%5C%5C%5CP%288%5Cleq%20x%5Cleq%2013%29%3D%5Cfrac%7B1%7D%7B10%7D%20%5Ccdot%20%5Bx%5D_%7B10%7D%5E%7B13%7D%5C%5C%5C%5CP%288%5Cleq%20x%5Cleq%2013%29%3D%5Cfrac%7B1%7D%7B10%7D%20%5Ccdot%20%2813-10%29%5C%5C%5C%5CP%288%5Cleq%20x%5Cleq%2013%29%3D%5Cfrac%7B3%7D%7B10%7D%5C%5C%5C%5CP%288%5Cleq%20x%5Cleq%2013%29%3D0.3)
Therefore, the probability is P(8<x<13)=0.3.
d) We calculate the probability that you will be late to each of the 9:30am classes next week:
![P(x>14)=\int_{14}^{20} f(x)\, dx\\\\P(x>14)=\int_{14}^{20} \frac{1}{10} \, dx\\\\P(x>14)=\frac{1}{10} [x]_{14}^{20}\\\\P(x>14)=\frac{6}{10}\\\\P(x>14)=0.6](https://tex.z-dn.net/?f=P%28x%3E14%29%3D%5Cint_%7B14%7D%5E%7B20%7D%20f%28x%29%5C%2C%20dx%5C%5C%5C%5CP%28x%3E14%29%3D%5Cint_%7B14%7D%5E%7B20%7D%20%5Cfrac%7B1%7D%7B10%7D%20%5C%2C%20dx%5C%5C%5C%5CP%28x%3E14%29%3D%5Cfrac%7B1%7D%7B10%7D%20%5Bx%5D_%7B14%7D%5E%7B20%7D%5C%5C%5C%5CP%28x%3E14%29%3D%5Cfrac%7B6%7D%7B10%7D%5C%5C%5C%5CP%28x%3E14%29%3D0.6)
You have 9:30am classes three times a week. So, we get:

Therefore, the probability is P=0.216.
e) We calculate the probability that you are late to at least one 9am class next week:
![P(x>9.5)=\int_{10}^{20} f(x)\, dx\\\\P(x>9.5)=\int_{10}^{20} \frac{1}{10} \, dx\\\\P(x>9.5)=\frac{1}{10} [x]_{10}^{20}\\\\P(x>9.5)=1](https://tex.z-dn.net/?f=P%28x%3E9.5%29%3D%5Cint_%7B10%7D%5E%7B20%7D%20f%28x%29%5C%2C%20dx%5C%5C%5C%5CP%28x%3E9.5%29%3D%5Cint_%7B10%7D%5E%7B20%7D%20%5Cfrac%7B1%7D%7B10%7D%20%5C%2C%20dx%5C%5C%5C%5CP%28x%3E9.5%29%3D%5Cfrac%7B1%7D%7B10%7D%20%5Bx%5D_%7B10%7D%5E%7B20%7D%5C%5C%5C%5CP%28x%3E9.5%29%3D1)
Therefore, the probability is P=1.
Answer:
x = 0
Step-by-step explanation:

Take out common factor

The factor inside the parenthesis cannot be factored
Since there is a common factor that we pulled out of the original equation,
set that x equal to zero and solve
: Therefore x = 0
There are
ways of drawing a 4-card hand, where

is the so-called binomial coefficient.
There are 13 different card values, of which we want the hand to represent 4 values, so there are
ways of meeting this requirement.
For each card value, there are 4 choices of suit, of which we only pick 1, so there are
ways of picking a card of any given value. We draw 4 cards from the deck, so there are
possible hands in which each card has a different value.
Then there are
total hands in which all 4 cards have distinct values, and the probability of drawing such a hand is

The MOST accurate definition of standard deviation is the mean absolute deviation of the sum of the squared deviation from the average. Option 4
<h3>Definition of standard deviation</h3>
Standard deviation can be defined as a statistic tool that measures the dispersion of a dataset in relation to its mean and is calculated as the square root of the available variance of the set.
It is calculated as the square root of the given variance.
Thus, the MOST accurate definition of standard deviation is the mean absolute deviation of the sum of the squared deviation from the average.
Learn more about standard deviation here:
brainly.com/question/475676
#SPJ1