Yes correct...................
We conclude that the slope of the linear equation that passes through the points (9, 1) and (10, -1) is -2.
<h3>
How to get the slope of the line that passes through the points (9, 1) and (10, - 1)?</h3>
A linear equation has the general form:
y = a*x + b
Where a is the slope of the line, and b is the y-intercept.
There is a simple equation to get the slope of a point if we know two points. For a line that passes through ( a, b) and (c, d), the equation for the slope is:
a = (d - b)/(c - a)
In this case we know that our line passes through (9, 1) and (10, -1), then using the above equation, we can see that the slope is:
a = (-1 - 1)/(10 - 9) = -2
We conclude that the slope of the linear equation that passes through the points (9, 1) and (10, -1) is -2.
If you want to learn more about linear equations:
brainly.com/question/1884491
#SPJ1
Answer:log1.39*10^12=12.14
Step-by-step explanation:
Answer:
The answer is x².
Step-by-step explanation:
1) Use product rule: x^a x^b = x^a + b.

2) Simplify 6 - 4 to 2.

<u>Therefor</u><u>,</u><u> </u><u>the</u><u> </u><u>answer</u><u> </u><u>is</u><u> </u><u>x</u><u>²</u>